scholarly journals Engineering Application of an Identification Method to Shock-Induced Vortex Stability in the Transonic Axial Fan Rotor

2021 ◽  
Vol 2021 ◽  
pp. 1-24
Author(s):  
Yan Xue ◽  
Ning Ge

In the present paper, the steady RANS (Reynolds-Averaged Navier-Stokes) simulations based on our independently developed CFD (Computational Fluid Dynamics) solver NUAA-Turbo 2.0, are carried out to investigate the shock wave/tip leakage vortex (SW/TLV) interaction in two representative transonic axial fan rotors, NASA Rotor 67 and NASA Rotor 37. The intent of this study is mainly to verify if an identification method derived from relevant theories is suitable for shock-induced vortex stability in the real engineering environment. As the additional findings, a universal tip vortex model is established and the characteristics of vortex breakdown or not are also summarized under different load levels. To ensure the prediction accuracy of all numerical methods selected in this research, detailed comparisons are made between computational and experimental results before flow analysis. The excellent agreement between the both indicates that the current code is capable of capturing the dominant secondary flow structures and aerodynamic phenomenon, especially the vortex system in tip region and SW/TLV interaction. It is found that three vortical structures such as tip leakage vortex (TLV), shock-induced vortex (SIV), tip separation vortex (TSV) in addition the tip leakage vortex-induced vortex (TLV-IV, which only occurs when the TLV strength increases to a certain extent) frequently exist near the blade tip and then abstracted as a tip vortex model. A stable TLV after passing through the passage shock is commonly characterized by tight rolling-up, slow deceleration and slight expansion. Conversely, the vortex behaves in a breakdown state. The final verification results show that the above two vortex states can be satisfactorily detected by the theoretical discriminant introduced in this work.

2001 ◽  
Vol 123 (4) ◽  
pp. 748-754 ◽  
Author(s):  
Choon-Man Jang ◽  
Masato Furukawa ◽  
Masahiro Inoue

Three-dimensional structures of the vortical flow field in a propeller fan with a shroud covering only the rear region of its rotor tip have been investigated by experimental analysis using laser Doppler velocimetry (LDV) measurements and by numerical analysis using a large eddy simulation (LES) in Part I of the present study. The propeller fan has a very complicated vortical flow field near the rotor tip compared with axial fan and compressor rotors. It is found that three vortex structures are formed near the rotor tip: the tip vortex, the leading edge separation vortex, and the tip leakage vortex. The tip vortex is so strong that it dominates the flow field near the tip. Its formation starts from the blade tip suction side near the midchord. Even at the design condition the tip vortex convects nearly in the tangential direction, thus impinging on the pressure surface of the adjacent blade. The leading edge separation vortex develops close along the tip suction surface and disappears in the rear region of the rotor passage. The tip leakage vortex is so weak that it does not affect the flow field in the rotor.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Yan Xue ◽  
Ning Ge

Abstract This paper presents the steady numerical investigation on SW/TLV interaction with SST turbulence model at two characteristic operating conditions for a transonic fan rotor, NASA Rotor 67. The main purpose of the present work is to reveal the main flow structures and properties during the SW/TLV interaction, and a theoretical criterion for vortex stability is engineeringly utilized to determine such shock wave-induced vortex stability. The validations for all numerical schemes have been conducted by comparing the RANS solutions with detailed experimental data before the analyses of flow phenomenon and mechanism. The simulation results indicate that numerical methods used in NUAA-Turbo 2.0 solver, independently developed by our team, enable to accurately capture the complex flow structures including shock wave and vortex systems within the blade passages, especially in the tip region. Similar to wing-tip vortex created by vortex generator, the TLV has the same wake-type characteristics. The flow pattern generated by such interaction is characterized by the bulged-forward shock front followed by a subsonic flow region and a slight expansion of vortex core. No apparent vortex breakdown was examined by both intuitive visualization of three-dimensional vortex structure and a theoretical criterion.


Author(s):  
Isao Tomita ◽  
Seiichi Ibaraki ◽  
Masato Furukawa ◽  
Kazutoyo Yamada

Recently, the application of turbochargers is increasing because they are effective in improving fuel consumption of engines. One of the most important turbocharger characteristics is compressor operating range, since it has been used in various driving patterns with the advent of variable geometry turbochargers. Owing to the complicated phenomena such as rotating stall occurring at low flow rate condition, flow analysis is very difficult and details of flow structure have not been fully understood for a long time since the early 1970’s. In this study, two compressors with different operating range width were investigated with experimental and computational flow analysis. In the compressor with narrow operating range, the amplitude of blade passing pressure fluctuation decreases rapidly and rotating stall occurs near surging. On the other hand, in the compressor with wide operating range, the blockage by the tip leakage vortex breakdown play a role in stabilizing the flow filed and keeping up a high performance even at low flow rates.


2013 ◽  
Vol 135 (5) ◽  
Author(s):  
Isao Tomita ◽  
Seiichi Ibaraki ◽  
Masato Furukawa ◽  
Kazutoyo Yamada

Recently, the application of turbochargers is increasing because they are effective in improving fuel consumption of engines. One of the most important turbocharger characteristics is compressor operating range, since it has been used in various driving patterns with the advent of variable geometry turbochargers. Owing to the complicated phenomena, such as rotating stall occurring at low flow rate condition, flow analysis is very difficult and details of flow structure have not been fully understood for a long time since the early 1970s. In this study, two compressors with different operating range width were investigated with experimental and computational flow analysis. In the compressor with narrow operating range, the amplitude of blade passing pressure fluctuation decreases rapidly and rotating stall occurs near surging. On the other hand, in the compressor with wide operating range, the blockage by the tip leakage vortex breakdown play a role in stabilizing the flow field and keeping up a high performance even at low flow rates.


Author(s):  
Guangyao An ◽  
Yanhui Wu ◽  
Jinhua Lang ◽  
Zhiyang Chen ◽  
Bo Wang ◽  
...  

It is well known that tip flow unsteadiness has profound effects on both performance and stability of axial compressors. A number of numerical simulations have been performed in transonic compressors to uncover the nature of tip flow unsteadiness. From this research, tip flow unsteadiness can be attributed to many factors, such as the movement of the primary and secondary leakage flow, the interaction between shock and vortex, and the tip leakage vortex breakdown. However, no final conclusion has yet been reached on this matter. The current investigation is carried out to explore the origin of tip flow unsteadiness from the perspective of the evolution and development of tip leakage vortex breakdown. In this paper, unsteady RANS simulations have been performed to investigate the fluid dynamic processes in a tip-critical transonic compressor, NASA Rotor 35. A vortex core visualization method based on an eigenvector method is introduced as an important tool to identify the vortex arising from tip leakage flow. As the flow rate varies, three critical operating points with distinctive features of flow unsteadiness are observed. At the first critical operating point, bubble-type breakdown occurs, and gives rise to a weak unsteadiness with high frequency in the rotor passage due to the oscillation of the recirculation region induced by the tip leakage vortex breakdown. At the second critical operating point, the vortex breakdown has transformed from bubble-type to spiral-type, which leads to the frequency of the pressure oscillation reduced almost by half and the amplitude increased significantly. At the third critical operating point, a new vortex that is perpendicular to the pressure surface comes into being in the tip region, which leads to a prominent pressure oscillation of the tip flow and another jump in amplitude. As a result, the evolution and development of tip leakage vortex breakdown are closely related to the tip flow unsteadiness of the investigated rotor.


2013 ◽  
Vol 136 (4) ◽  
Author(s):  
William Riéra ◽  
Lionel Castillon ◽  
Julien Marty ◽  
Francis Leboeuf

In the present study, the influence of the inlet condition on the tip clearance flow of an axial compressor is investigated. Two different zonal detached eddy simulations (ZDES) computations are carried out and compared to Reynolds-averaged Navier–Stokes (RANS) and unsteady RANS (URANS) computations as well as to experimental data. A rotating distortion map of the flow cartography is set as inlet condition for the first ZDES computation. An azimuthally averaged inlet condition is used for the second one and uncouples the rotor tip-leakage vortex flutter phenomenon, which stems from the arrival of the inlet guide vane wake from the behavior inherent to the rotor tip-leakage vortex. In the studied configuration, the inlet guide vane tip vortex reveals to lower the effects from double leakage on the rotor. The topology of the rotor tip-leakage vortex is described, and its development is analyzed.


Author(s):  
K. Yamada ◽  
K. Funazaki ◽  
H. Sasaki

The purpose of this study is to have a better understanding of the unsteady behavior of tip clearance flow at near-stall condition from a multi-passage simulation and to clarify the relation between such unsteadiness and rotating disturbance. This study is motivated by the following concern. A single passage simulation has revealed the occurrence of the tip leakage vortex breakdown at near-stall condition in a transonic axial compressor rotor, leading to the unsteadiness of the tip clearance flow field in the rotor passage. These unsteady flow phenomena were similar to those in the rotating instability, which is classified in one of the rotating disturbances. In other words it is possible that the tip leakage vortex breakdown produces a rotating disturbance such as the rotating instability. Three-dimensional unsteady RANS calculation was conducted to simulate the rotating disturbance in a transonic axial compressor rotor (NASA Rotor 37). The four-passage simulation was performed so as to capture a short length scale disturbance like the rotating instability and the spike-type stall inception. The simulation demonstrated that the unsteadiness of tip leakage vortex, which was derived from the vortex breakdown at near-stall condition, invoked the rotating disturbance in the rotor, which is similar to the rotating instability.


2006 ◽  
Vol 2006.2 (0) ◽  
pp. 143-144
Author(s):  
Wei Sin SIM ◽  
Norimasa SHIOMI ◽  
Kenji KANEKO ◽  
Naoto SHIMOHARA ◽  
Toshiaki SETOGUCHI

Author(s):  
Masato Furukawa ◽  
Masahiro Inoue ◽  
Kazuhisa Saiki ◽  
Kazutoyo Yamada

The breakdown of tip leakage vortex has been investigated on a low-speed axial compressor rotor with moderate blade loading. Effects of the breakdown on the rotor aerodynamics are elucidated by Navier-Stokes flow simulations and visualization techniques for identifying the breakdown. The simulations show that the leakage vortex breakdown occurs inside the rotor at a lower flow rate than the peak pressure rise operating condition. The breakdown is characterized by the existence of the stagnation point followed by a bubble-like recirculation region. The onset of breakdown causes significant changes in the nature of the tip leakage vortex: large expansion of the vortex and disappearance of the streamwise vorticity concentrated in the vortex. The expansion has an extremely large blockage effect extending to the upstream of the leading edge. The disappearance of the concentrated vorticity results in no rolling-up of the vortex downstream of the rotor and the disappearance of the pressure trough on the casing. The leakage flow field downstream of the rotor is dominated by the outward radial flow resulting from the contraction of the bubble-like structure of the breakdown region. It is found that the leakage vortex breakdown plays a major role in characteristic of rotor performance at near-stall conditions. As the flow rate is decreased from the peak pressure rise operating condition, the breakdown region grows rapidly in the streamwise, spanwise and pitchwise directions. The growth of the breakdown causes the blockage and the loss to increase drastically. Then, the interaction of the breakdown region with the blade suction surface gives rise to the three-dimensional separation of the suction surface boundary layer, thus leading to a sudden drop in the total pressure rise across the rotor.


Sign in / Sign up

Export Citation Format

Share Document