scholarly journals Link Trustworthiness Evaluation over Multiple Heterogeneous Information Networks

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Meng Wang ◽  
Xu Qin ◽  
Wei Jiang ◽  
Chunshu Li ◽  
Guilin Qi

Link trustworthiness evaluation is a crucial task for information networks to evaluate the probability of a link being true in a heterogeneous information network (HIN). This task can significantly influence the effectiveness of downstream analysis. However, the performance of existing evaluation methods is limited, as they can only utilize incomplete or one-sided information from a single HIN. To address this problem, we propose a novel multi-HIN link trustworthiness evaluation model that leverages information across multiple related HINs to accomplish link trustworthiness evaluation tasks inherently and efficiently. We present an effective method to evaluate and select informative pairs across HINs and an integrated training procedure to balance inner-HIN and inter-HIN trustworthiness. Experiments on a real-world dataset demonstrate that our proposed model outperforms baseline methods and achieves the best accuracy and F1-score in downstream tasks of HINs.

2020 ◽  
Vol 39 (3) ◽  
pp. 3463-3473
Author(s):  
Fujiao Ji ◽  
Zhongying Zhao ◽  
Hui Zhou ◽  
Heng Chi ◽  
Chao Li

Heterogeneous information networks are widely used to represent real world applications in forms of social networks, word co-occurrence networks, and communication networks, etc. However, It is difficult for traditional machine learning methods to analyze these networks effectively. Heterogeneous information network embedding aims to convert the network into low dimensional vectors, which facilitates the following tasks. Thus it is receiving tremendous attention from the research community due to its effectiveness and efficiency. Although numerous methods have been present and applied successfully, there are few works to make a comparative study on heterogeneous information network embedding, which is very important for developers and researchers to select an appropriate method. To address the above problem, we make a comparative study on the heterogeneous information network embeddings. Specifically, we first give the problem definition of heterogeneous information network embedding. Then the heterogeneous information networks are classified into four categories from the perspective of network type. The state-of-the-art methods for each category are also compared and reviewed. Finally, we make a conclusion and suggest some potential future research directions.


2019 ◽  
Vol 19 (S6) ◽  
Author(s):  
Xintian Chen ◽  
Chunyang Ruan ◽  
Yanchun Zhang ◽  
Huijuan Chen

Abstract Background Traditional Chinese medicine (TCM) is a highly important complement to modern medicine and is widely practiced in China and in many other countries. The work of Chinese medicine is subject to the two factors of the inheritance and development of clinical experience of famous Chinese medicine practitioners and the difficulty in improving the service capacity of basic Chinese medicine practitioners. Heterogeneous information networks (HINs) are a kind of graphical model for integrating and modeling real-world information. Through HINs, we can integrate and model the large-scale heterogeneous TCM data into structured graph data and use this as a basis for analysis. Methods Mining categorizations from TCM data is an important task for precision medicine. In this paper, we propose a novel structured learning model to solve the problem of formula regularity, a pivotal task in prescription optimization. We integrate clustering with ranking in a heterogeneous information network. Results The results from experiments on the Pharmacopoeia of the People’s Republic of China (ChP) demonstrate the effectiveness and accuracy of the proposed model for discovering useful categorizations of formulas. Conclusions We use heterogeneous information networks to model TCM data and propose a TCM-HIN. Combining the heterogeneous graph with the probability graph, we proposed the TCM-Clus algorithm, which combines clustering with ranking and classifies traditional Chinese medicine prescriptions. The results of the categorizations can help Chinese medicine practitioners to make clinical decision.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Ying Yin ◽  
Wanning Zheng

Heterogeneous information networks can naturally simulate complex objects, and they can enrich recommendation systems according to the connections between different types of objects. At present, a large number of recommendation algorithms based on heterogeneous information networks have been proposed. However, the existing algorithms cannot extract and combine the structural features in heterogeneous information networks. Therefore, this paper proposes an efficient recommendation algorithm based on heterogeneous information network, which uses the characteristics of graph convolution neural network to automatically learn node information to extract heterogeneous information and avoid errors caused by the manual search for metapaths. Furthermore, by fully considering the scoring relationship between nodes, a calculation strategy combining heterogeneous information and a scoring information fusion strategy is proposed to solve the scoring between nodes, which makes the prediction scoring more accurate. Finally, by updating the nodes, the training scale is reduced, and the calculation efficiency is improved. The study conducted a large number of experiments on three real data sets with millions of edges. The results of the experiments show that compared with PMF, SemRec, and other algorithms, the proposed algorithm improves the recommendation accuracy MAE by approximately 3% and the RMSE by approximately 8% and reduces the time consumption significantly.


2021 ◽  
Vol 25 (3) ◽  
pp. 711-738
Author(s):  
Phu Pham ◽  
Phuc Do

Link prediction on heterogeneous information network (HIN) is considered as a challenge problem due to the complexity and diversity in types of nodes and links. Currently, there are remained challenges of meta-path-based link prediction in HIN. Previous works of link prediction in HIN via network embedding approach are mainly focused on exploiting features of node rather than existing relations in forms of meta-paths between nodes. In fact, predicting the existence of new links between non-linked nodes is absolutely inconvincible. Moreover, recent HIN-based embedding models also lack of thorough evaluations on the topic similarity between text-based nodes along given meta-paths. To tackle these challenges, in this paper, we proposed a novel approach of topic-driven multiple meta-path-based HIN representation learning framework, namely W-MMP2Vec. Our model leverages the quality of node representations by combining multiple meta-paths as well as calculating the topic similarity weight for each meta-path during the processes of network embedding learning in content-based HINs. To validate our approach, we apply W-TMP2Vec model in solving several link prediction tasks in both content-based and non-content-based HINs (DBLP, IMDB and BlogCatalog). The experimental outputs demonstrate the effectiveness of proposed model which outperforms recent state-of-the-art HIN representation learning models.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Jibing Wu ◽  
Lianfei Yu ◽  
Qun Zhang ◽  
Peiteng Shi ◽  
Lihua Liu ◽  
...  

The heterogeneous information networks are omnipresent in real-world applications, which consist of multiple types of objects with various rich semantic meaningful links among them. Community discovery is an effective method to extract the hidden structures in networks. Usually, heterogeneous information networks are time-evolving, whose objects and links are dynamic and varying gradually. In such time-evolving heterogeneous information networks, community discovery is a challenging topic and quite more difficult than that in traditional static homogeneous information networks. In contrast to communities in traditional approaches, which only contain one type of objects and links, communities in heterogeneous information networks contain multiple types of dynamic objects and links. Recently, some studies focus on dynamic heterogeneous information networks and achieve some satisfactory results. However, they assume that heterogeneous information networks usually follow some simple schemas, such as bityped network and star network schema. In this paper, we propose a multityped community discovery method for time-evolving heterogeneous information networks with general network schemas. A tensor decomposition framework, which integrates tensor CP factorization with a temporal evolution regularization term, is designed to model the multityped communities and address their evolution. Experimental results on both synthetic and real-world datasets demonstrate the efficiency of our framework.


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1671
Author(s):  
Jibing Gong ◽  
Cheng Wang ◽  
Zhiyong Zhao ◽  
Xinghao Zhang

In MOOCs, generally speaking, curriculum designing, course selection, and knowledge concept recommendation are the three major steps that systematically instruct users to learn. This paper focuses on the knowledge concept recommendation in MOOCs, which recommends related topics to users to facilitate their online study. The existing approaches only consider the historical behaviors of users, but ignore various kinds of auxiliary information, which are also critical for user embedding. In addition, traditional recommendation models only consider the immediate user response to the recommended items, and do not explicitly consider the long-term interests of users. To deal with the above issues, this paper proposes AGMKRec, a novel reinforced concept recommendation model with a heterogeneous information network. We first clarify the concept recommendation in MOOCs as a reinforcement learning problem to offer a personalized and dynamic knowledge concept label list to users. To consider more auxiliary information of users, we construct a heterogeneous information network among users, courses, and concepts, and use a meta-path-based method which can automatically identify useful meta-paths and multi-hop connections to learn a new graph structure for learning effective node representations on a graph. Comprehensive experiments and analyses on a real-world dataset collected from XuetangX show that our proposed model outperforms some state-of-the-art methods.


2018 ◽  
Vol 7 (2.6) ◽  
pp. 293
Author(s):  
Sadhana Kodali ◽  
Madhavi Dabbiru ◽  
B Thirumala Rao

An Information Network is the network formed by the interconnectivity of the objects formed due to the interaction between them. In our day-to-day life we can find these information networks like the social media network, the network formed by the interaction of web objects etc. This paper presents a survey of various Data Mining techniques that can be applicable to information networks. The Data Mining techniques of both homogeneous and heterogeneous information networks are discussed in detail and a comparative study on each problem category is showcased.


Author(s):  
Yuanfu Lu ◽  
Chuan Shi ◽  
Linmei Hu ◽  
Zhiyuan Liu

Heterogeneous information network (HIN) embedding aims to embed multiple types of nodes into a low-dimensional space. Although most existing HIN embedding methods consider heterogeneous relations in HINs, they usually employ one single model for all relations without distinction, which inevitably restricts the capability of network embedding. In this paper, we take the structural characteristics of heterogeneous relations into consideration and propose a novel Relation structure-aware Heterogeneous Information Network Embedding model (RHINE). By exploring the real-world networks with thorough mathematical analysis, we present two structure-related measures which can consistently distinguish heterogeneous relations into two categories: Affiliation Relations (ARs) and Interaction Relations (IRs). To respect the distinctive characteristics of relations, in our RHINE, we propose different models specifically tailored to handle ARs and IRs, which can better capture the structures and semantics of the networks. At last, we combine and optimize these models in a unified and elegant manner. Extensive experiments on three real-world datasets demonstrate that our model significantly outperforms the state-of-the-art methods in various tasks, including node clustering, link prediction, and node classification.


Author(s):  
Phuc Do

Meta-path is an important concept of heterogeneous information networks (HINs). Meta-paths were used in many tasks such as information retrieval, decision making, and product recommendation. Normally meta-paths were proposed by human experts. Recently, works on meta-path discovery have proposed in-memory solutions that fit in one computer. With large HINs, the whole HIN cannot be loaded in the memory. In this chapter, the authors proposed distributed algorithms to discover meta-paths of large HINs on cloud. They develop the distributed algorithms to discover the significant meta-path, maximal significant meta-path, and top-k meta-paths between two vertices of HIN. Calculation of the support of meta-paths or performing breadth first search can be computational costly in very large HINs. Conveniently, the distributed algorithms utilize the GraphFrames library of Apache Spark on cloud computing environment to efficiently query large HINs. The authors conduct the experiments on large DBLP dataset to prove the performance of our algorithms on cloud.


2022 ◽  
Vol 16 (4) ◽  
pp. 1-21
Author(s):  
Chenji Huang ◽  
Yixiang Fang ◽  
Xuemin Lin ◽  
Xin Cao ◽  
Wenjie Zhang

Given a heterogeneous information network (HIN) H, a head node h , a meta-path P, and a tail node t , the meta-path prediction aims at predicting whether h can be linked to t by an instance of P. Most existing solutions either require predefined meta-paths, which limits their scalability to schema-rich HINs and long meta-paths, or do not aim at predicting the existence of an instance of P. To address these issues, in this article, we propose a novel prediction model, called ABLE, by exploiting the A ttention mechanism and B i L STM for E mbedding. Particularly, we present a concatenation node embedding method by considering the node types and a dynamic meta-path embedding method that carefully considers the importance and positions of edge types in the meta-paths by the Attention mechanism and BiLSTM model, respectively. A triplet embedding is then derived to complete the prediction. We conduct extensive experiments on four real datasets. The empirical results show that ABLE outperforms the state-of-the-art methods by up to 20% and 22% of improvement of AUC and AP scores, respectively.


Sign in / Sign up

Export Citation Format

Share Document