scholarly journals A Four-Layer Odd Function Symmetrical Dual-Polarization Equilateral Right Triangle Slot Printed Broadband Directional Antenna for Wireless Lab Measurement Applications

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Chang-Ju Wu ◽  
I-Fong Chen ◽  
Jwo-Shiun Sun ◽  
Chia-Mei Peng ◽  
Kang-Ling Li ◽  
...  

A four-layer odd function symmetrical dual-polarization coplanar waveguide- (CPW-) fed equilateral right triangle slot printed broadband directional antenna for wireless lab measurement applications is presented. The proposed antenna consists of two stacked perpendicular odd function symmetrical equilateral right triangle slot antenna structures with two stacked reflector ground planes. It is miniaturized, simple, and easy to be fabricated. The measured results demonstrate that the proposed antenna can achieve wide impedance bandwidth that is almost 520% for |S11| and |S22|; VSWR ≦ 3 which has implemented the operating band from 1.37 to 7.12 GHz for Global Positioning System (GPS, 1.575 GHz), Wireless Local Area Networks band (2.4 GHz and 5.8 GHz), 6 GHz unlicensed spectrum (5.925 GHz∼7.125 GHz), Long Term Evolution Upper Band (LTE, 1710–2690 MHz), and sub-6 5 G band (3.5 GHz and 4.7 GHz) applications. The measured in-band isolation performance between the two input ports |S12| ≦ −17 dB is significantly achieved, and meanwhile, the antenna radiation pattern, peak gain, and efficiency of the proposed antenna are measured as well. In the end, the radiation pattern data are compared and analyzed with simulation results.

2014 ◽  
Vol 68 (1) ◽  
Author(s):  
Sahar Chagharvand ◽  
M. R. B. Hamid ◽  
M. R. Kamarudin ◽  
Mohsen Khalily

This paper presents a single layer planar slot antenna for dual band operation. The antenna is fed by a coplanar waveguide (CPW) with two inverted C-shaped resonators to achieve the dual band operation. The impedance bandwidth for ǀS11ǀ < -10dB is 14% in lower band and 7% in higher band. The antenna prototype’s electromagnetic performance, impedance bandwidth, radiation pattern, and antenna gain were measured. The proposed configuration offers a relatively compact, easy to fabricate and dual band performance providing gain between 2 and 4 dBi. The designed antenna has good dual bandwidth covering 3.5 WiMAX and 5.8 WLAN tasks. Experimental and numerical results also showed good agreement after comparison.


2021 ◽  
Vol 36 (6) ◽  
pp. 788-795
Author(s):  
Dalia Elsheakh ◽  
Osama Dardeer

This article presents a 2×1 CPW ultra wideband rectangular slot antenna array (UWB-RSAA) with a modified circular slot shape to support a high data rate for wireless communications applications. The proposed antenna array dimensions are 0.7λ×0.8λo×0.064λo at the resonant frequency 1.8 GHz. It is fabricated on Rogers RO4003 substrate and fed by using a coplanar waveguide (CPW). A graphene layer is added on one side of the substrate to realize frequency reconfigurability and improve the array gain. The proposed array acquires -10 dB impedance bandwidth of the RSAA that extends from 1.7 GHz to 2.6 GHz, from 3.2 to 3.8 GHz, and from 5.2 GHz to 7 GHz. The proposed array achieved a realized peak gain of 7.5 dBi at 6.5 GHz at 0 Volt bias with an average gain of 4.5 dBi over the operating band. When the graphene bias is increased to 20 Volt, the antenna bandwidth extends from 1 GHz to 4 GHz and from 5 to 7 GHz with a peak gain of 14 dBi at 3.5 GHz and an average gain of 7.5 dBi. The linearly polarized operation of the proposed array over the operating bands makes it suitable for short-range wireless communications .


2015 ◽  
Vol 77 (10) ◽  
Author(s):  
Igbafe Orikumhi ◽  
Mohamad Rijal Hamid ◽  
Ali Nyangwarimam Obadiah

A square slot antenna fed by a coplanar waveguide (CPW) is presented in this paper. The design consist of two pairs of “F” shaped planar strips placed within a square slotted ground. The strips are used to excite multiple resonant frequencies, the strips are connected to the ground plane by means of ideal switches. The proposed antenna has achieved multiple resonant frequencies of 2.4/5.2/5.8 GHz for WLAN and 3.5/5.5 for WiMAX applications. The measured results shows a good agreement with the simulated results in terms of return loss, radiation pattern and gain. The proposed antenna is designed for the frequency range of 2 GHz to 7 GHz which makes it suitable for Bluetooth, WLAN and WiMAX applications. 


2008 ◽  
Vol 2008 ◽  
pp. 1-6 ◽  
Author(s):  
Dawood Seyed Javan ◽  
Mohammad Ali Salari ◽  
Omid Hashemi Ghoochani

A novel design of an ultra-wideband (UWB) slot antenna is presented. This antenna operates as a transmitter and receiver antenna. Effects of the antenna dimensional parameters are studied through experimental and simulation results. Design procedures are developed and verified for different frequency bands. The experimental and simulation results exhibit good impedance bandwidth, radiation pattern, and relatively constant gain over the entire band of frequency. Antenna gain and directivity at boresight and in their maximum states are close to each other and indicate high radiation efficiency. To use the antenna as a linearly polarized antenna, the radiation pattern in E-plane is better thanthat inH-plane.


Author(s):  
Jitendra Vaswani

This paper presents a two-element dual-band MIMO antenna with dual-polarization for 5G user equipment. Both operating frequencies are of sub-6 GHz band centered at 3.6 GHz and 5.5 GHz respectively and are independent of each other. Antenna polarizations depend on the placement of the feed elements on the PCB. The antenna is designed on FR-4 substrate to ensure its easy availability and keeping it cost-effective. The resultant radiation pattern of the antenna set is bi-directional with good gain and efficiency.


Author(s):  
Amrita Gorai ◽  
Bappadittya Roy ◽  
G. K. Mahanti

A compact circularly polarized CPW-fed slot antenna is proposed here. The antenna consists of a pentagonal patch within an asymmetrical slot with a single coplanar waveguide feed. The proposed antenna is excited with CPW feed mechanism and investigated experimentally. The structure is fabricated on FR4 epoxy substrate with a permittivity of 4.4. The impedance bandwidth of 10[Formula: see text]GHz (4[Formula: see text]GHz to 14[Formula: see text]GHz) and the axial ratio bandwidth of 1.2[Formula: see text]GHz with the corresponding fractional bandwidth of 113%. The simulation results fulfil the bandwidth requirements of IEEE 802.11a (5.15–5.35[Formula: see text]GHz/5.47–5.725[Formula: see text]GHz) for wireless applications. In terms of bandwidth, compactness and circular polarization comparable results between simulated and measured results clearly show the validity of the proposed structure.


2015 ◽  
Vol 73 (1) ◽  
Author(s):  
Muhammad Ramlee Kamarudin ◽  
Siti Fairuz Roslan ◽  
Mohsen Khalily ◽  
Mohd Haizal Jamaluddin

This paper presents the design of coplanar waveguide (CPW) rectangular dielectric resonator antenna (RDRA) with and without metallic strip, operating at 2.6 GHz for long term evolution (LTE) applications. The CPW RDRA without metallic strip produces impedance bandwidth of 51 %. Then, a metallic strip was added on top of the dielectric resonator (DR) in order to enhance the impedance bandwidth; thus give more flexibility for the system to cover more applications. A good agreement between simulation and measurement results, in terms of reflection coefficient magnitude and radiation pattern is presented. The simulated and measured impedance BWs for S11 < -6dB are 67 % (1.74-3.47 GHz) and 66 % (1.83-3.54 GHZ) respectively, with the gain of 3.12 dBi is obtained at 2.6 GHz.  The mode excited for this antenna is TEy1δ1 mode.


2015 ◽  
Vol 8 (2) ◽  
pp. 363-368 ◽  
Author(s):  
Raghupatruni Venkatsiva Ram Krishna ◽  
Raj Kumar ◽  
Nagendra Kushwaha

In this paper, a microstrip fed, L-shape slot antenna for dual polarization is proposed. The two arms of the slot generate electric fields of orthogonal polarizations. By properly sectioning the slot and the feed line, ultra wideband (UWB) behavior is obtained. The measured impedance bandwidth (S11< −10 dB) is more than 8.6 GHz (112%) and 8.2 GHz (104%) for Port 1 and Port 2, respectively. The measured isolation is better than 25 dB over most of the band. The aperture field distribution justifies the dual polarized nature. A modified version which implements a band-notch over 5.1–5.85 GHz wireless local area network (WLAN) band is also presented. With a compact, single substrate design, the antenna can be useful in MIMO transmission systems, polarimetric UWB radar, high performance microwave imaging, and other future wireless communications devices.


2014 ◽  
Vol 8 (2) ◽  
pp. 277-281 ◽  
Author(s):  
Tang Yang ◽  
Gao Wen ◽  
Gao Jinsong ◽  
Feng Xiaoguo

In this paper a novel compact multi-band printed coplanar waveguide (CPW)-feed antenna for wireless local area network (WLAN)/WiMAX/RFID applications is proposed. The proposed antenna is composed of a multi-triangular structure as metal ground plane and the radiation element with four different branches, both of the structures are printed on the same side of a substrate and the antenna is fed by a CPW. By carefully tuning the locations and the sizes of these four branches, the antenna can yield three different resonating frequencies to cover the desired bands for WLAN/WiMAX/RFID applications. The simulated and measured results demonstrate that the proposed antenna has the impedance bandwidth (for return loss less than −10 dB) of 700 MHz (2.2−2.9 GHz), 540 MHz (3.16–3.7 GHz), and 850 MHz (5.05–5.9 GHz), respectively, which can cover the WLAN 2.4/5.8 GHz bands, the WiMAX 2.5/3.5 GHz bands, and the RFID 2.45/5.8 GHz bands.


Sign in / Sign up

Export Citation Format

Share Document