scholarly journals Removal of Acid Red 88 Using Activated Carbon Produced from Pomelo Peels by KOH Activation: Orthogonal Experiment, Isotherm, and Kinetic Studies

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Zheng Liu ◽  
Konglong Xing

Activated carbon (PPAC) from pomelo peels was prepared by carbonization and KOH activation. The performance of PPAC was assessed by removing acid red 88 (AR88) in aqueous solution. The most suitable activation processes were found by orthogonal experiments, aimed to achieve the maximum of removal capacity of AR88. Moreover, the possible mechanisms of adsorption were studied through the results of characterization, isotherm fitting, and kinetics simulation. Results showed the preparation parameter that mattered the most to AR88 removal efficiency was the activation temperature of PPAC, followed by impregnation ratio and activation time. The optimal preparation conditions of PPAC were at activation temperature 800°C, activation time 90 min, and impregnation ratio 2.5 : 1. The characterization results showed optimal PPAC had a microporous and amorphous carbon structure whose BET specific area and total pore volume were 2504 m2/g and 1.185 cm3/g, respectively. The isotherm fitting demonstrated that the sorption process followed the Langmuir model, and theoretical maximal sorption value was 1486 mg/g. The kinetics simulation showed that the pseudo-second-order model described the sorption behavior better, suggesting chemisorption seemed to be the rate-limiting step in the adsorption process. This work presented that PPAC was a promising and efficient adsorbent for AR88 from water.

2012 ◽  
Vol 550-553 ◽  
pp. 1099-1102
Author(s):  
Zhu Li ◽  
Lin Xia Gao ◽  
Ke Wu Pi ◽  
Duan Ji Wan ◽  
Si Xiang

The aims of this work were to utilize tea seed shell, biomass waste, for the preparation of activated carbon by zinc chloride activation. The effects of the preparation parameters, which were concentration of Zncl2, impregnation ratio, impregnation time and activation time, on the yield and adsorption capacity of methylene blue solution were analyzed in order to optimize these operation conditions by Orthogonal experiment. The experimental results show that the optimum activated carbon from tea seed shell was obtained by these conditions as follows: impregnation ratio of 50% ZnCl2/shell of 1:1.5, 2.5 hours impregnation time and 1.5 hours activation time in 500°C activation temperature.


2012 ◽  
Vol 490-495 ◽  
pp. 3540-3544
Author(s):  
Shu Guang Ouyang ◽  
Le Le Fu ◽  
Zhi Wang

An orthogonal experiment is conducted to study the effect of activation temperature, activation time and the ratio of KOH to carbon material (i.e. the mass ratio of KOH to coking fly ash) on the adsorption capacities of the activated carbon made by using coking fly ash as the raw material and KOH the activating agent. The results show that the three factors can be ordered as activation temperature, activation time and the ratio of KOH to carbon material according to the significance in their effect on preparation of activated carbon from coking fly ash. In addition, the optimum activation temperature is 850°C, optimum activation time 30minutes, and the optimum ratio of KOH to carbon material 4:1. For the activated carbon made under these conditions, the iodine absorption capacity is 874.3774mg/g, specific surface-area 275.51m2/g, the mean pore diameter 47.75nm and total pore volume 0.1172cm3/g. As the proportion of mesoporouses reaches 71.57%, the activated carbon made from coking fly ash is good for absorption of those absorbates with higher molecular weights.


BioResources ◽  
2019 ◽  
Vol 14 (1) ◽  
pp. 1333-1346 ◽  
Author(s):  
Zhenwei Yu ◽  
Qi Gao ◽  
Yue Zhang ◽  
Dandan Wang ◽  
Innocent Nyalala ◽  
...  

Sludge-based activated carbon (SAC) was prepared with sewage sludge and Chinese medicine herbal residues (CMHR’s). An orthogonal experimental design method was used to determine the optimum preparation conditions. The effects of the impregnation ratio, activation temperature, activation time, and addition ratio of CMHR’s on the iodine value and Brunauer-Emmett-Teller surface area of activated carbon were studied. X-ray diffraction, Fourier-transform infrared spectrometer, and scanning electron microscopy were used to characterize the prepared SAC. The results showed that the optimal process conditions for preparing the SAC were as follows: an impregnation ratio of 1:4, an activation time of 30 min, an activation temperature of 700 °C, and an addition ratio of CMHR’s of 40%. The adsorption balance of the methylene blue dye was examined at room temperature. Adsorption isotherms were obtained by fitting the data using the Langmuir and Freundlich models, which showed that methylene blue adsorption was most suitable for the Langmuir equation. The results demonstrated that SAC prepared from SS and CMHR’s from a Chinese medicine factory could effectively expel dyes from wastewater.


TAPPI Journal ◽  
2018 ◽  
Vol 17 (02) ◽  
pp. 63-69 ◽  
Author(s):  
Mamon Sarkar ◽  
Chao Tian ◽  
M. Sarwar Jahan

Activated carbon was prepared by phosphoric acid (H3PO4) activation of potassium hydroxide (KOH) pulping spent liquor lignin from rice straw and compared with KOH hydroxide activation. The process parameters, such as impregnation ratio, activation temperature, and activation time were varied and their effects on the yield of activated carbon and iodine number were studied. The activated carbon prepared by H3PO4 at 800°C for 60 min at an impregnation ratio of 2.5 reached a Brunauer-Emmett-Teller (BET) surface area of 1063 m2/g, including pore diameter of 14.4 nm, iodine number of 525 mg/g, and yield of 49.2%. Yield and BET surface area in KOH activation was much lower than that of H3PO4.


2013 ◽  
Vol 634-638 ◽  
pp. 1398-1403
Author(s):  
Jun Han Li ◽  
Shao Li Yang ◽  
Ning Sun ◽  
Lan Ma

The impact of activator varieties on the activation effect in preparing activated carbon with corncob adopting chemical activation process were researched in this paper, the results showed that phosphoric acid as the activator was much better than potassium hydroxide and zinc chloride. It was deduced from the orthogonal experiment results that the impact of activation temperature on the activation effect is the greatest, impregnation ratio takes the second place, and the activator concentration the least. Suitable parameters of activation process were obtained: when the activator concentration is 50%, activation temperature 500°C, impregnation ratio 2.7:1, the iodine value of activated carbon is 822.08mg/g.


2018 ◽  
Vol 54 (1A) ◽  
pp. 277
Author(s):  
Tran Van Thuan

This study aimed at preparing low cost activated carbon (AC) from sugarcane bagasse by ZnCl2 activation and evaluating the effects of synthesis conditions and variables using the response surface methodology (RSM) approach for the adsorption of Cu (II) ion from aqueous solution by the synthesized ACs. From the analysis of variance (ANOVA), the most influential factors including activation temperature, impregnation ratio and activation time on each experimental design response were investigated. The optimized conditions for preparation of AC and removal of Cu (II) ions were identified with the activation temperature of 673 K, impregnation ratio of 1.5 and activation time of 35.2 minutes. An optimized conditions based–test experiment with 48.8 % of AC yield and 92.3 % Cu (II) ion removal was observed.


2019 ◽  
Vol 8 (2) ◽  
pp. 74-83
Author(s):  
Fatiha Moughaoui ◽  
Amine Ouaket ◽  
Asmae Laaraibi ◽  
Souad Hamdouch ◽  
Zoubida Anbaoui ◽  
...  

Chemical activation was used to prepare a low-cost activated carbon (AC) from an agricultural waste material: sugarcane bagasse. It was used as a green biosorbent for the removal of two cationic dyes from aqueous solutions (Methylene blue (MB) and Malachite Green (MG)). Central composite design (CCD) using response surface methodology (RSM) was applied in this work in order to run a limited number of experiments. The possibility of revealing the interaction of three selected factors: activation temperature, activation time, and chemical impregnation ratios at different levels for the process of preparing the AC were studied. Two-second order quadratic regression models for a yield of AC and capacity of adsorption were developed using JMP Software.The results of the process of optimization were carried out; it showed a good agreement between the predictive response of RSM model and the obtained experimental values with high correlation coefficients (R2) which indicates the efficacy of the model. The optimal activated carbon was obtained using 400°C activation temperature, 36 min activation time, and 2 impregnation ratio, resulting in 63.12 % of AC yield and 99.86 % for MB removal and 400°C activation temperature, 90 min activation time and 2 impregnation ratio, resulting in 45.69 % of AC yield and 99.75 % for MG removal. Moreover, the comparison between the experimental and the predicted values at optimum conditions was in good agreement with relatively small errors.This work showed the effectiveness and the performance of preparing activated carbon from sugarcane bagasse, and it recommended as an effective and green biosorbent for the removal of cationic dyes from aqueous solutions.


2011 ◽  
Vol 282-283 ◽  
pp. 407-411 ◽  
Author(s):  
Jun Wang ◽  
Ning Qiu ◽  
Huan Wu ◽  
Fu An Wu

This paper reports the preparation of activated carbon from a new type of agricultural biomass materials, pruning mulberry shoot, by ZnCl2activation. The experiments in this study vary the parameters of ZnCl2activation procedures, such as concentration and impregnation ratio of the activating agent, temperature and time of chemical activation. The experimental results indicated that with a ZnCl2concentration of 50%, an impregnation ratio of 2:1, an activation temperature of 850 °C, and an activation time of 90 min, the activated carbon with better iodine and MB adsorption capacity were 1422.40 mg/g and 163.54mg/g, respectively. Therefore, the optimal preparation process of activated carbon from pruning mulberry shoot was successfully achieved by using single-factor method in this study, which can be used as adsorbents for various environmental applications.


Processes ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 249 ◽  
Author(s):  
Alfarooq O. Basheer ◽  
Marlia M. Hanafiah ◽  
Mohammed Abdulhakim Alsaadi ◽  
Y. Al-Douri ◽  
M.A. Malek ◽  
...  

The Powder-Activated Carbon (PAC) under optimum conditions from a new low-cost precursor Date Palm Fibre (DPF) biomass through a carbonization followed by KOH activation has been synthesized by response surface methodology (RSM) combined with central composite design (CCD). The special effects of activation temperature, time, and impregnation ratio on bio-PAC Aluminum (Al3+) removal and uptake capacity were examined. The optimum conditions for synthesized bio-PAC were found to be 99.4% and 9.94 mg·g−1 for Al3+ removal and uptake capacity, respectively at activation temperature 650 °C, activation time 1h and impregnation ratio 1. The optimum bio-PAC was characterized and analyzed using FESEM, FTIR, XRD, TGA, BET, and Zeta potential. RSM-CCD experimental design was used to optimize removal and uptake capacity of Al3+ on bio-PAC. Optimum conditions were found to be at bio-PAC dose of 5 mg with pH 9.48 and contact time of 117 min. Furthermore, at optimized conditions of Al3+ removal, kinetic, and isotherm models were investigated. The results reveal the feasibility of DPF biomass to be used as a potential and cost-effective precursor for synthesized bio-PAC for Al3+ removal.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2758
Author(s):  
Panuwat Lawtae ◽  
Chaiyot Tangsathitkulchai

A new and simple method, based entirely on a physical approach, was proposed to produce activated carbon from longan fruit seed with controlled mesoporosity. This method, referred to as the OTA, consisted of three consecutive steps of (1) air oxidation of initial microporous activated carbon of about 30% char burn-off to introduce oxygen surface functional groups, (2) the thermal destruction of the functional groups by heating the oxidized carbon in a nitrogen atmosphere at a high temperature to increase the surface reactivity due to increased surface defects by bond disruption, and (3) the final reactivation of the resulting carbon in carbon dioxide. The formation of mesopores was achieved through the enlargement of the original micropores after heat treatment via the CO2 gasification, and at the same time new micropores were also produced, resulting in a larger increase in the percentage of mesopore volume and the total specific surface area, in comparison with the production of activated carbon by the conventional two-step activation method using the same activation time and temperature. For the activation temperatures of 850 and 900 °C and the activation time of up to 240 min, it was found that the porous properties of activated carbon increased with the increase in activation time and temperature for both preparation methods. A maximum volume of mesopores of 0.474 cm3/g, which accounts for 44.1% of the total pore volume, and a maximum BET surface area of 1773 m2/g was achieved using three cycles of the OTA method at the activation temperature of 850 °C and 60 min activation time for each preparation cycle. The two-step activation method yielded activated carbon with a maximum mesopore volume of 0.270 cm3/g (33.0% of total pore volume) and surface area of 1499 m2/g when the activation temperature of 900 °C and a comparable activation time of 240 min were employed. Production of activated carbon by the OTA method is superior to the two-step activation method for better and more precise control of mesopore development.


Sign in / Sign up

Export Citation Format

Share Document