Preparation of Pruning Mulberry Shoot-Based Activated Carbon by ZnCl2 Activation

2011 ◽  
Vol 282-283 ◽  
pp. 407-411 ◽  
Author(s):  
Jun Wang ◽  
Ning Qiu ◽  
Huan Wu ◽  
Fu An Wu

This paper reports the preparation of activated carbon from a new type of agricultural biomass materials, pruning mulberry shoot, by ZnCl2activation. The experiments in this study vary the parameters of ZnCl2activation procedures, such as concentration and impregnation ratio of the activating agent, temperature and time of chemical activation. The experimental results indicated that with a ZnCl2concentration of 50%, an impregnation ratio of 2:1, an activation temperature of 850 °C, and an activation time of 90 min, the activated carbon with better iodine and MB adsorption capacity were 1422.40 mg/g and 163.54mg/g, respectively. Therefore, the optimal preparation process of activated carbon from pruning mulberry shoot was successfully achieved by using single-factor method in this study, which can be used as adsorbents for various environmental applications.

2019 ◽  
Vol 8 (2) ◽  
pp. 74-83
Author(s):  
Fatiha Moughaoui ◽  
Amine Ouaket ◽  
Asmae Laaraibi ◽  
Souad Hamdouch ◽  
Zoubida Anbaoui ◽  
...  

Chemical activation was used to prepare a low-cost activated carbon (AC) from an agricultural waste material: sugarcane bagasse. It was used as a green biosorbent for the removal of two cationic dyes from aqueous solutions (Methylene blue (MB) and Malachite Green (MG)). Central composite design (CCD) using response surface methodology (RSM) was applied in this work in order to run a limited number of experiments. The possibility of revealing the interaction of three selected factors: activation temperature, activation time, and chemical impregnation ratios at different levels for the process of preparing the AC were studied. Two-second order quadratic regression models for a yield of AC and capacity of adsorption were developed using JMP Software.The results of the process of optimization were carried out; it showed a good agreement between the predictive response of RSM model and the obtained experimental values with high correlation coefficients (R2) which indicates the efficacy of the model. The optimal activated carbon was obtained using 400°C activation temperature, 36 min activation time, and 2 impregnation ratio, resulting in 63.12 % of AC yield and 99.86 % for MB removal and 400°C activation temperature, 90 min activation time and 2 impregnation ratio, resulting in 45.69 % of AC yield and 99.75 % for MG removal. Moreover, the comparison between the experimental and the predicted values at optimum conditions was in good agreement with relatively small errors.This work showed the effectiveness and the performance of preparing activated carbon from sugarcane bagasse, and it recommended as an effective and green biosorbent for the removal of cationic dyes from aqueous solutions.


Author(s):  
Omar Abed Habeeb ◽  
Ramesh Kanthasamy ◽  
Gomaa A. M. Ali ◽  
Rosli Mohd Yunus

The main point of this study is to investigate the optimal conditions for preparation of activated carbon from wood sawdust (ACWSD) for removal of hydrogen sulfide (H2S) from wastewater. The response surface methodology (RSM) was employed to prepare the ACWSD by chemical activation with potassium hydroxide (KOH). The threepreparation  variables impact of activation temperature (724 – 1000 °C), KOH: precursor (wt%) impregnation ratio (IR) (2:1 – 4:1) and activation time (60 – 120 min) on removal efficiency (RE, %) of H2S and activated carbon yield (ACY, %) were investigated. The preparation parameters were correlated by developing a quadratic model depend on the central composite design (CCD) to the two responses. The analysis of variance (ANOVA) was identified the most influential variable on each experimental design responses. The results showed that the temperature of 854 °C, chemical impregnation ratio of 2.95 wt% and activation time of 80 min were the optimum conditions for preparation of ACWSD with responses of RE and ACY of 72.88 % and 31.89 %, respectively. It is concluded that the ACWSD was appeared to be a favorable substance for removal of dissolved H2S from synthetic wastewater.


2019 ◽  
Vol 8 (2) ◽  
pp. 74
Author(s):  
Fatiha Moughaoui ◽  
Amine Ouaket ◽  
Asmae Laaraibi ◽  
Souad Hamdouch ◽  
Zoubida Anbaoui ◽  
...  

<p>Chemical activation was used to prepare a low-cost activated carbon (AC) from an agricultural waste material: sugarcane bagasse. It was used as a green biosorbent for the removal of two cationic dyes from aqueous solutions (Methylene blue (MB) and Malachite Green (MG)). Central composite design (CCD) using response surface methodology (RSM) was applied in this work in order to run a limited number of experiments. The possibility of revealing the interaction of three selected factors: activation temperature, activation time, and chemical impregnation ratios at different levels for the process of preparing the AC were studied. Two-second order quadratic regression models for a yield of AC and capacity of adsorption were developed using JMP Software.</p><p>The results of the process of optimization were carried out; it showed a good agreement between the predictive response of RSM model and the obtained experimental values with high correlation coefficients (R<sup>2</sup>) which indicates the efficacy of the model. The optimal activated carbon was obtained using 400°C activation temperature, 36 min activation time, and 2 impregnation ratio, resulting in 63.12 % of AC yield and 99.86 % for MB removal and 400°C activation temperature, 90 min activation time and 2 impregnation ratio, resulting in 45.69 % of AC yield and 99.75 % for MG removal. Moreover, the comparison between the experimental and the predicted values at optimum conditions was in good agreement with relatively small errors.</p><p>This work showed the effectiveness and the performance of preparing activated carbon from sugarcane bagasse, and it recommended as an effective and green biosorbent for the removal of cationic dyes from aqueous solutions.</p>


2012 ◽  
Vol 184-185 ◽  
pp. 1110-1113 ◽  
Author(s):  
Li Fen He ◽  
Qi Xia Liu ◽  
Tao Ji ◽  
Qiang Gao

Various jute-based activated carbon fibers were prepared by using jute fibers as raw materials and phosphoric acid as activating agent. The effects of three main factors such as concentration of activating agent, activation temperature and activation time on the yield and adsorptive properties of active carbon fibers were investigated via orthogonal experiments. The surface physical morphology of jute-based activated carbon fiber was also observed by using Scanning Electron Microscope. Results showed that the optimum conditions were phosphoric acid concentration of 4 mol/L, activation temperature of 600 °C and activation time of 1h. The yield, iodine number and amount of methylene blue adsorption of the active carbon fiber prepared under optimum conditions were 37.99 %, 1208.87 mg/g and 374.65 mg/g, respectively.


2021 ◽  
Vol 11 (5) ◽  
pp. 12662-12679

In this study, Chemical activation was used to prepare a low-cost activated carbon (AC) from agricultural waste material: Cucumis melo. It was used as a green biosorbent for the removal of cationic and anionic dyes from aqueous solutions (Methylene blue (MB) and Acid orange 7 (AO7)).A full factorial 24 experimental design was used to optimize the preparation conditions. The factors and levels included are activation temperature (300 and 500ºC), activation time (1 and 3 h), H3PO4 concentration (1.5 and 2.5 mol/L), and contact time (60 and 90 min). The surface area of the activated carbons and high removal efficiency of MB and AO7 was chosen as a measure of the optimization. The activated carbon prepared at 500 °C, for 3 hours with an H3PO4 concentration of 2.5 mol/L and a contact time of 90 min, have the largest specific surface area (475 m2/g) and the percentage of discoloration of methylene blue (99.4%). Furthermore, the greater value of AO7 removal (94.20%) was obtained at 3h - activation time, 500°C - activation temperature, 1.5 mol/L - H3PO4 concentration with a 90 min contact time.


BioResources ◽  
2019 ◽  
Vol 14 (1) ◽  
pp. 1333-1346 ◽  
Author(s):  
Zhenwei Yu ◽  
Qi Gao ◽  
Yue Zhang ◽  
Dandan Wang ◽  
Innocent Nyalala ◽  
...  

Sludge-based activated carbon (SAC) was prepared with sewage sludge and Chinese medicine herbal residues (CMHR’s). An orthogonal experimental design method was used to determine the optimum preparation conditions. The effects of the impregnation ratio, activation temperature, activation time, and addition ratio of CMHR’s on the iodine value and Brunauer-Emmett-Teller surface area of activated carbon were studied. X-ray diffraction, Fourier-transform infrared spectrometer, and scanning electron microscopy were used to characterize the prepared SAC. The results showed that the optimal process conditions for preparing the SAC were as follows: an impregnation ratio of 1:4, an activation time of 30 min, an activation temperature of 700 °C, and an addition ratio of CMHR’s of 40%. The adsorption balance of the methylene blue dye was examined at room temperature. Adsorption isotherms were obtained by fitting the data using the Langmuir and Freundlich models, which showed that methylene blue adsorption was most suitable for the Langmuir equation. The results demonstrated that SAC prepared from SS and CMHR’s from a Chinese medicine factory could effectively expel dyes from wastewater.


2010 ◽  
Vol 129-131 ◽  
pp. 1151-1155 ◽  
Author(s):  
Xiao Juan Jin ◽  
Zhi Ming Yu ◽  
Zhe Ren ◽  
Xin Liu

Activated carbons were prepared through chemical activation of waste particle board (WPB) precursor using potassium hydroxide as the chemical agent. The effects of different parameters, such as chemical/WPB ratio, activation time and activation temperature on yield and the methylene blue adsorption capacity of activated carbon were investigated. Experimental results indicated that the optimum conditions were as follow: activation temperature 850°C, KOH(50% concentration)/ WPB 4.0, activation time 50 min. Amount of methylene blue adsorption, Iodine number and the yield of activated carbon prepared under optimum conditions were 15.0 mL/0.lg, 1213mg/g and 36.9%, respectively. Therefore, great potential exists for developing activated carbon products from waste wood, which will have the positive effects of reducing our landfill problem and gain attractive products.


2013 ◽  
Vol 634-638 ◽  
pp. 1398-1403
Author(s):  
Jun Han Li ◽  
Shao Li Yang ◽  
Ning Sun ◽  
Lan Ma

The impact of activator varieties on the activation effect in preparing activated carbon with corncob adopting chemical activation process were researched in this paper, the results showed that phosphoric acid as the activator was much better than potassium hydroxide and zinc chloride. It was deduced from the orthogonal experiment results that the impact of activation temperature on the activation effect is the greatest, impregnation ratio takes the second place, and the activator concentration the least. Suitable parameters of activation process were obtained: when the activator concentration is 50%, activation temperature 500°C, impregnation ratio 2.7:1, the iodine value of activated carbon is 822.08mg/g.


2018 ◽  
Vol 77 (11) ◽  
pp. 2555-2565 ◽  
Author(s):  
Xiao Liu ◽  
Yibei Wan ◽  
Penglei Liu ◽  
Lei Zhao ◽  
Weihua Zou

Abstract Salix psammophila (SP), a solid waste abundantly available, was applied as a precursor to prepare the activated carbon by chemical activation method using phosphoric acid (H3PO4). Response surface methodology based on Box-Behnken design was used to optimize the prepared conditions of activated carbon. The effects of concentration of H3PO4, activation temperature and activation time on the adsorption performance (expressed by the adsorption capacity of ciprofloxacin hydrochloride (CIP) and norfloxacin (NOR)) were investigated. The optimum conditions were obtained using H3PO4 concentration of 67.83%, activation temperature of 567.44 °C and activation time of 86.61 min. The optimum activated carbon (SPAC) was characterized with scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), Brunauer–Emmett–Teller (BET) and Fourier transform infrared spectroscopy (FTIR). The adsorption behavior of CIP and NOR on SPAC was carried out and the mechanisms for the adsorption process were proposed. The equilibrium data were fitted by the Freundlich and Langmuir isotherm models, which resulted in 251.9 mg/g and 366.9 mg/g of the maximum monolayer adsorption for CIP and NOR at 25 °C, respectively. The best fitted kinetic model was pseudo-second-order, implying that chemisorption dominated in the adsorption process. This study indicated that activated carbon based on Salix psammophila (SPAC) was an excellent adsorbent for removing fluoroquinolone antibiotics from aqueous solutions.


2018 ◽  
Vol 54 (1A) ◽  
pp. 277
Author(s):  
Tran Van Thuan

This study aimed at preparing low cost activated carbon (AC) from sugarcane bagasse by ZnCl2 activation and evaluating the effects of synthesis conditions and variables using the response surface methodology (RSM) approach for the adsorption of Cu (II) ion from aqueous solution by the synthesized ACs. From the analysis of variance (ANOVA), the most influential factors including activation temperature, impregnation ratio and activation time on each experimental design response were investigated. The optimized conditions for preparation of AC and removal of Cu (II) ions were identified with the activation temperature of 673 K, impregnation ratio of 1.5 and activation time of 35.2 minutes. An optimized conditions based–test experiment with 48.8 % of AC yield and 92.3 % Cu (II) ion removal was observed.


Sign in / Sign up

Export Citation Format

Share Document