scholarly journals Early MCI-to-AD Conversion Prediction Using Future Value Forecasting of Multimodal Features

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Sidra Minhas ◽  
Aasia Khanum ◽  
Atif Alvi ◽  
Farhan Riaz ◽  
Shoab A. Khan ◽  
...  

In Alzheimer’s disease (AD) progression, it is imperative to identify the subjects with mild cognitive impairment before clinical symptoms of AD appear. This work proposes a technique for decision support in identifying subjects who will show transition from mild cognitive impairment (MCI) to Alzheimer’s disease (AD) in the future. We used robust predictors from multivariate MRI-derived biomarkers and neuropsychological measures and tracked their longitudinal trajectories to predict signs of AD in the MCI population. Assuming piecewise linear progression of the disease, we designed a novel weighted gradient offset-based technique to forecast the future marker value using readings from at least two previous follow-up visits. Later, the complete predictor trajectories are used as features for a standard support vector machine classifier to identify MCI-to-AD progressors amongst the MCI patients enrolled in the Alzheimer’s disease neuroimaging initiative (ADNI) cohort. We explored the performance of both unimodal and multimodal models in a 5-fold cross-validation setup. The proposed technique resulted in a high classification AUC of 91.2% and 95.7% for 6-month- and 1-year-ahead AD prediction, respectively, using multimodal markers. In the end, we discuss the efficacy of MRI markers as compared to NM for MCI-to-AD conversion prediction.

2021 ◽  
Vol 15 ◽  
Author(s):  
Justine Staal ◽  
Francesco Mattace-Raso ◽  
Hennie A. M. Daniels ◽  
Johannes van der Steen ◽  
Johan J. M. Pel

BackgroundResearch into Alzheimer’s disease has shifted toward the identification of minimally invasive and less time-consuming modalities to define preclinical stages of Alzheimer’s disease.MethodHere, we propose visuomotor network dysfunctions as a potential biomarker in AD and its prodromal stage, mild cognitive impairment with underlying the Alzheimer’s disease pathology. The functionality of this network was tested in terms of timing, accuracy, and speed with goal-directed eye-hand tasks. The predictive power was determined by comparing the classification performance of a zero-rule algorithm (baseline), a decision tree, a support vector machine, and a neural network using functional parameters to classify controls without cognitive disorders, mild cognitive impaired patients, and Alzheimer’s disease patients.ResultsFair to good classification was achieved between controls and patients, controls and mild cognitive impaired patients, and between controls and Alzheimer’s disease patients with the support vector machine (77–82% accuracy, 57–93% sensitivity, 63–90% specificity, 0.74–0.78 area under the curve). Classification between mild cognitive impaired patients and Alzheimer’s disease patients was poor, as no algorithm outperformed the baseline (63% accuracy, 0% sensitivity, 100% specificity, 0.50 area under the curve).Comparison with Existing Method(s)The classification performance found in the present study is comparable to that of the existing CSF and MRI biomarkers.ConclusionThe data suggest that visuomotor network dysfunctions have potential in biomarker research and the proposed eye-hand tasks could add to existing tests to form a clear definition of the preclinical phenotype of AD.


2020 ◽  
Vol 10 (2) ◽  
pp. 370-379 ◽  
Author(s):  
Jie Cai ◽  
Lingjing Hu ◽  
Zhou Liu ◽  
Ke Zhou ◽  
Huailing Zhang

Background: Mild cognitive impairment (MCI) patients are a high-risk group for Alzheimer's disease (AD). Each year, the diagnosed of 10–15% of MCI patients are converted to AD (MCI converters, MCI_C), while some MCI patients remain relatively stable, and unconverted (MCI stable, MCI_S). MCI patients are considered the most suitable population for early intervention treatment for dementia, and magnetic resonance imaging (MRI) is clinically the most recommended means of imaging examination. Therefore, using MRI image features to reliably predict the conversion from MCI to AD can help physicians carry out an effective treatment plan for patients in advance so to prevent or slow down the development of dementia. Methods: We proposed an embedded feature selection method based on the least squares loss function and within-class scatter to select the optimal feature subset. The optimal subsets of features were used for binary classification (AD, MCI_C, MCI_S, normal control (NC) in pairs) based on a support vector machine (SVM), and the optimal 3-class features were used for 3-class classification (AD, MCI_C, MCI_S, NC in triples) based on one-versus-one SVMs (OVOSVMs). To ensure the insensitivity of the results to the random train/test division, a 10-fold cross-validation has been repeated for each classification. Results: Using our method for feature selection, only 7 features were selected from the original 90 features. With using the optimal subset in the SVM, we classified MCI_C from MCI_S with an accuracy, sensitivity, and specificity of 71.17%, 68.33% and 73.97%, respectively. In comparison, in the 3-class classification (AD vs. MCI_C vs. MCI_S) with OVOSVMs, our method selected 24 features, and the classification accuracy was 81.9%. The feature selection results were verified to be identical to the conclusions of the clinical diagnosis. Our feature selection method achieved the best performance, comparing with the existing methods using lasso and fused lasso for feature selection. Conclusion: The results of this study demonstrate the potential of the proposed approach for predicting the conversion from MCI to AD by identifying the affected brain regions undergoing this conversion.


2018 ◽  
Vol 28 (09) ◽  
pp. 1850022 ◽  
Author(s):  
Olga Valenzuela ◽  
Xiaoyi Jiang ◽  
Antonio Carrillo ◽  
Ignacio Rojas

Computer-Aided Diagnosis (CAD) represents a relevant instrument to automatically classify between patients with and without Alzheimer's Disease (AD) using several actual imaging techniques. This study analyzes the optimization of volumes of interest (VOIs) to extract three-dimensional (3D) textures from Magnetic Resonance Image (MRI) in order to diagnose AD, Mild Cognitive Impairment converter (MCIc), Mild Cognitive Impairment nonconverter (MCInc) and Normal subjects. A relevant feature of the proposed approach is the use of 3D features instead of traditional two-dimensional (2D) features, by using 3D discrete wavelet transform (3D-DWT) approach for performing feature extraction from T-1 weighted MRI. Due to the high number of coefficients when applying 3D-DWT to each of the VOIs, a feature selection algorithm based on mutual information is used, as is the minimum Redundancy Maximum Relevance (mRMR) algorithm. Region optimization has been performed in order to discover the most relevant regions (VOIs) in the brain with the use of Multi-Objective Genetic Algorithms, being one of the objectives to be optimize the accuracy of the system. The error index of the system is computed by the confusion matrix obtained by the multi-class support vector machine (SVM) classifier. Principal Component Analysis (PCA) is used with the purpose of reducing the number of features to the classifier. The cohort of subjects used in the study consisted of 296 different patients. A first group of 206 patients was used to optimize VOI selection and another group of 90 independent subjects (that did not belong to the first group) was used to test the solutions yielded by the genetic algorithm. The proposed methodology obtains excellent results in multi-class classification achieving accuracies of 94.4% and also extracting significant information on the location of the most relevant points of the brain. This suggests that the proposed method could aid in the research of other neurodegenerative diseases, improving the accuracy of the diagnosis and finding the most relevant regions of the brain associated with them.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Sergio Grueso ◽  
Raquel Viejo-Sobera

Abstract Background An increase in lifespan in our society is a double-edged sword that entails a growing number of patients with neurocognitive disorders, Alzheimer’s disease being the most prevalent. Advances in medical imaging and computational power enable new methods for the early detection of neurocognitive disorders with the goal of preventing or reducing cognitive decline. Computer-aided image analysis and early detection of changes in cognition is a promising approach for patients with mild cognitive impairment, sometimes a prodromal stage of Alzheimer’s disease dementia. Methods We conducted a systematic review following PRISMA guidelines of studies where machine learning was applied to neuroimaging data in order to predict whether patients with mild cognitive impairment might develop Alzheimer’s disease dementia or remain stable. After removing duplicates, we screened 452 studies and selected 116 for qualitative analysis. Results Most studies used magnetic resonance image (MRI) and positron emission tomography (PET) data but also magnetoencephalography. The datasets were mainly extracted from the Alzheimer’s disease neuroimaging initiative (ADNI) database with some exceptions. Regarding the algorithms used, the most common was support vector machine with a mean accuracy of 75.4%, but convolutional neural networks achieved a higher mean accuracy of 78.5%. Studies combining MRI and PET achieved overall better classification accuracy than studies that only used one neuroimaging technique. In general, the more complex models such as those based on deep learning, combined with multimodal and multidimensional data (neuroimaging, clinical, cognitive, genetic, and behavioral) achieved the best performance. Conclusions Although the performance of the different methods still has room for improvement, the results are promising and this methodology has a great potential as a support tool for clinicians and healthcare professionals.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Zhe Huang ◽  
Minglang Sun ◽  
Chengan Guo

Alzheimer’s disease (AD) is an irreversible neurodegenerative disease, and, at present, once it has been diagnosed, there is no effective curative treatment. Accurate and early diagnosis of Alzheimer’s disease is crucial for improving the condition of patients since effective preventive measures can be taken in advance to delay the onset time of the disease. 18F-Fluorodeoxyglucose positron emission tomography (18F-FDG PET : PET) is an effective biomarker of the symptom of AD and has been used as medical imaging data for diagnosing AD. Mild cognitive impairment (MCI) is regarded as an early symptom of AD, and it has been shown that MCI also has a certain biomedical correlation with PET. In this paper, we explore how to use 3D PET images to realize the effective recognition of MCI and thus achieve the early prediction of AD. This problem is then taken as the classification of three categories of PET images, including MCI, AD, and NC (normal controls). In order to get better classification performance, a novel network model is proposed in the paper based on 3D convolution neural networks (CNN) and support vector machines (SVM) by utilizing both the excellent abilities of CNN in feature extraction and SVM in classification. In order to make full use of the optimal property of SVM in solving binary classification problems, the three-category classification problem is divided into three binary classifications, and each binary classification is being realized with a CNN + SVM network. Then, the outputs of the three CNN + SVM networks are fused into a final three-category classification result. An end-to-end learning algorithm is developed to train the CNN + SVM networks, and a decision fusion algorithm is exploited to realize the fusion of the outputs of three CNN + SVM networks. Experimental results obtained in the work with comparative analyses confirm the effectiveness of the proposed method.


2021 ◽  
Author(s):  
Sergio Grueso ◽  
Raquel Viejo-Sobera

Abstract Background: Increase in life-span in our society is a double-edged sword that entails a growing number of patients with neurocognitive disorders, Alzheimer’s disease being the most prevalent. Advances in medical imaging and computational power, enable new methods for early detection of neurocognitive disorders with the goal of preventing or reducing cognitive decline. Computer-aided image analysis and early detection of changes in cognition is a promising approach for patients with mild cognitive impairment, sometimes a prodromal stage of Alzheimer’s disease.Methods: We conducted a systematic review following PRISMA guidelines of studies where Machine Learning was applied to neuroimaging data in order to predict the progression from Mild Cognitive Impairment to Alzheimer’s disease. After removing duplicates, we screened 159 studies and selected 47 for a qualitative analysis. Results: Most studies used Magnetic Resonance Image and Positron Emission Tomography data but also Magnetoencephalography. The datasets were mainly extracted from the Alzheimer’s disease Neuroimage Initiative (ADNI) database with some exceptions. Regarding the algorithms used, the most common were support vector machines, but more complex models such as Deep Learning, combined with multimodal and multidimensional data (neuroimaging, clinical, cognitive, biological, and behavioral) achieved the best performance. Conclusions: Although performance of the different models still has room for improvement, the results are promising and this methodology has a great potential as a support tool for clinicians and healthcare professionals.


2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Saidjalol Toshkhujaev ◽  
Kun Ho Lee ◽  
Kyu Yeong Choi ◽  
Jang Jae Lee ◽  
Goo-Rak Kwon ◽  
...  

Alzheimer’s disease (AD) is one of the most common neurodegenerative illnesses (dementia) among the elderly. Recently, researchers have developed a new method for the instinctive analysis of AD based on machine learning and its subfield, deep learning. Recent state-of-the-art techniques consider multimodal diagnosis, which has been shown to achieve high accuracy compared to a unimodal prognosis. Furthermore, many studies have used structural magnetic resonance imaging (MRI) to measure brain volumes and the volume of subregions, as well as to search for diffuse changes in white/gray matter in the brain. In this study, T1-weighted structural MRI was used for the early classification of AD. MRI results in high-intensity visible features, making preprocessing and segmentation easy. To use this image modality, we acquired four types of datasets from each dataset’s server. In this work, we downloaded 326 subjects from the National Research Center for Dementia homepage, 123 subjects from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) homepage, 121 subjects from the Alzheimer’s Disease Repository Without Borders homepage, and 131 subjects from the National Alzheimer’s Coordinating Center homepage. In our experiment, we used the multiatlas label propagation with expectation–maximization-based refinement segmentation method. We segmented the images into 138 anatomical morphometry images (in which 40 features belonged to subcortical volumes and the remaining 98 features belonged to cortical thickness). The entire dataset was split into a 70 : 30 (training and testing) ratio before classifying the data. A principal component analysis was used for dimensionality reduction. Then, the support vector machine radial basis function classifier was used for classification between two groups—AD versus health control (HC) and early mild cognitive impairment (MCI) (EMCI) versus late MCI (LMCI). The proposed method performed very well for all four types of dataset. For instance, for the AD versus HC group, the classifier achieved an area under curve (AUC) of more than 89% for each dataset. For the EMCI versus LMCI group, the classifier achieved an AUC of more than 80% for every dataset. Moreover, we also calculated Cohen kappa and Jaccard index statistical values for all datasets to evaluate the classification reliability. Finally, we compared our results with those of recently published state-of-the-art methods.


2018 ◽  
Vol 45 (1-2) ◽  
pp. 38-48 ◽  
Author(s):  
Chavit Tunvirachaisakul ◽  
Thitiporn Supasitthumrong ◽  
Sookjareon Tangwongchai ◽  
Solaphat Hemrunroj ◽  
Phenphichcha Chuchuen ◽  
...  

Background: The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD) developed a neuropsychological battery (CERAD-NP) to screen patients with Alzheimer’s dementia. Mild cognitive impairment (MCI) has received attention as a pre-dementia stage. Objectives: To delineate the CERAD-NP features of MCI and their clinical utility to externally validate MCI diagnosis. Methods: The study included 60 patients with MCI, diagnosed using the Clinical Dementia Rating, and 63 normal controls. Data were analysed employing receiver operating characteristic analysis, Linear Support Vector Machine, Random Forest, Adaptive Boosting, Neural Network models, and t-distributed stochastic neighbour embedding (t-SNE). Results: MCI patients were best discriminated from normal controls using a combination of Wordlist Recall, Wordlist Memory, and Verbal Fluency Test. Machine learning showed that the CERAD features learned from MCI patients and controls were not strongly predictive of the diagnosis (maximal cross-validation 77.2%), whilst t-SNE showed that there is a considerable overlap between MCI and controls. Conclusions: The most important features of the CERAD-NP differentiating MCI from normal controls indicate impairments in episodic and semantic memory and recall. While these features significantly discriminate MCI patients from normal controls, the tests are not predictive of MCI.


2018 ◽  
Vol 28 (08) ◽  
pp. 1850017 ◽  
Author(s):  
Chen Fang ◽  
Chunfei Li ◽  
Mercedes Cabrerizo ◽  
Armando Barreto ◽  
Jean Andrian ◽  
...  

Over the past few years, several approaches have been proposed to assist in the early diagnosis of Alzheimer’s disease (AD) and its prodromal stage of mild cognitive impairment (MCI). Using multimodal biomarkers for this high-dimensional classification problem, the widely used algorithms include Support Vector Machines (SVM), Sparse Representation-based classification (SRC), Deep Belief Networks (DBN) and Random Forest (RF). These widely used algorithms continue to yield unsatisfactory performance for delineating the MCI participants from the cognitively normal control (CN) group. A novel Gaussian discriminant analysis-based algorithm is thus introduced to achieve a more effective and accurate classification performance than the aforementioned state-of-the-art algorithms. This study makes use of magnetic resonance imaging (MRI) data uniquely as input to two separate high-dimensional decision spaces that reflect the structural measures of the two brain hemispheres. The data used include 190 CN, 305 MCI and 133 AD subjects as part of the AD Big Data DREAM Challenge #1. Using 80% data for a 10-fold cross-validation, the proposed algorithm achieved an average F1 score of 95.89% and an accuracy of 96.54% for discriminating AD from CN; and more importantly, an average F1 score of 92.08% and an accuracy of 90.26% for discriminating MCI from CN. Then, a true test was implemented on the remaining 20% held-out test data. For discriminating MCI from CN, an accuracy of 80.61%, a sensitivity of 81.97% and a specificity of 78.38% were obtained. These results show significant improvement over existing algorithms for discriminating the subtle differences between MCI participants and the CN group.


Sign in / Sign up

Export Citation Format

Share Document