scholarly journals Organic-Inorganic Geochemical Characteristics of the Upper Permian Pusige Formation in a High-Saline Lake Basin, Tarim Basin: Implications for Provenance, Paleoenvironments, and Organic Matter Enrichment

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-26
Author(s):  
Jingbin Wang ◽  
Zhiliang He ◽  
Dongya Zhu ◽  
Zhiqian Gao ◽  
Xiaowei Huang ◽  
...  

The third member (M3) of the Upper Permian Pusige Formation is a prominent organic-rich lacustrine mudstone sequence within the Yecheng-Hetian Sag, Tarim Basin, hosting major petroleum resources. However, its depositional history and organic matter (OM) enrichment mechanism have received little attention. Therefore, various organic and inorganic geochemical analyses were performed on thirty-four core samples from the Well DW1, to elucidate their depositional paleoenvironments, provenance, and tectonic setting, as well as the controlling factors of OM enrichment. Results showed that the M3 mudstones are classified as poor- to fair-quality hydrocarbon source rocks with mature type II-III kerogen, considering their low organic geochemical parameters. Paleosalinity indexes (e.g., Beq, Sr/Ba, and B/Ga) indicated the typical high-saline lacustrine water body, in which redox state was the oxic-dysoxic as suggested by multiple indicators. Many paleoclimate and weathering proxies suggest a dominant semiarid condition and low weathering degree in the Yecheng-Hetian Sag, which led to that weathered felsic rocks from the West Kunlun Orogen to the southwest of basin were quickly transported into the lake basin. Detrital materials carrying nutrient elements finally promoted the development of relatively high paleoproductivity indicated by fairly high P/Ti and Ba/Al ratios. The negative relationship between P/Ti and total organic carbon (TOC) indicates that paleoproductivity was not the main controlling factor. The correlations among TOC and P/Ti and other multiple proxies suggest that the OM enrichment can be interpreted as both the “preservation model” and “dilution model.” Although the water body was relatively oxygen-riched, high sedimentation rate could largely shorten the exposure time of OM with oxygen, thus decreased the decomposition of OM. In particular, the high-saline, stratified lake water may also restrain the degradation of OM. Furthermore, detrital dilution exerted a potential effect on TOC abundances. On the basis of the above results, a developing model was established to decipher the formation mechanism of OM in these M3 mudstones.

2021 ◽  
Vol 18 (2) ◽  
pp. 398-415
Author(s):  
He Bi ◽  
Peng Li ◽  
Yun Jiang ◽  
Jing-Jing Fan ◽  
Xiao-Yue Chen

AbstractThis study considers the Upper Cretaceous Qingshankou Formation, Yaojia Formation, and the first member of the Nenjiang Formation in the Western Slope of the northern Songliao Basin. Dark mudstone with high abundances of organic matter of Gulong and Qijia sags are considered to be significant source rocks in the study area. To evaluate their development characteristics, differences and effectiveness, geochemical parameters are analyzed. One-dimensional basin modeling and hydrocarbon evolution are also applied to discuss the effectiveness of source rocks. Through the biomarker characteristics, the source–source, oil–oil, and oil–source correlations are assessed and the sources of crude oils in different rock units are determined. Based on the results, Gulong and Qijia source rocks have different organic matter primarily detrived from mixed sources and plankton, respectively. Gulong source rock has higher thermal evolution degree than Qijia source rock. The biomarker parameters of the source rocks are compared with 31 crude oil samples. The studied crude oils can be divided into two groups. The oil–source correlations show that group I oils from Qing II–III, Yao I, and Yao II–III members were probably derived from Gulong source rock and that only group II oils from Nen I member were derived from Qijia source rock.


Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 523
Author(s):  
Gabriel Ricardo Cifuentes ◽  
Juan Jiménez-Millán ◽  
Claudia Patricia Quevedo ◽  
Fernando Nieto ◽  
Javier Cuadros ◽  
...  

In this investigation, we showed that high salinity promoted by hydrothermal inputs, reducing conditions of sediments with high content in organic matter, and the occurrence of an appropriate clay mineral precursor provide a suitable framework for low-temperature illitization processes. We studied the sedimentary illitization process that occurs in carbonaceous sediments from a lake with saline waters (Sochagota Lake, Colombia) located at a tropical latitude. Water isotopic composition suggests that high salinity was produced by hydrothermal contribution. Materials accumulated in the Sochagota Lake’s southern entrance are organic matter-poor sediments that contain detrital kaolinite and quartz. On the other hand, materials formed at the central segment and near the lake exit (north portion) are enriched in organic matter and characterized by the crystallization of Fe-sulfides. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), and energy dispersive X-ray spectrometry (EDX) data allowed for the identification of illite and illite-dioctahedral vermiculite mixed layers (I-DV), which are absent in the southern sediments. High humidity and temperate climate caused the formation of small-sized metastable intermediates of I-DV particles by the weathering of the source rocks in the Sochagota Lake Basin. These particles were deposited in the low-energy lake environments (middle and north part). The interaction of these sediments enriched in organic matter with the saline waters of the lake enriched in hydrothermal K caused a reducing environment that favored Fe mobilization processes and its incorporation to I-DV mixed layers that acted as mineral precursor for fast low temperature illitization, revealing that in geothermal areas clays in lakes favor a hydrothermal K uptake.


Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 659
Author(s):  
Mingyang Wei ◽  
Zhidong Bao ◽  
Axel Munnecke ◽  
Wei Liu ◽  
G. William M. Harrison ◽  
...  

Just as in deep-water sedimentary environments, productive source rocks can be developed in an evaporitic platform, where claystones are interbedded with evaporites and carbonates. However, the impact of the paleoenvironment on the organic matter enrichment of shallow water source rocks in an evaporite series has not been well explored. In this study, two wells in the central uplift of the Tarim Basin were systematically sampled and analyzed for a basic geochemical study, including major elements, trace elements, and total organic carbon (TOC), to understand the relationship between TOC and the paleoenvironmental parameters, such as paleosalinity, redox, paleoclimate, paleo-seawater depth, and paleoproductivity. The results show that the Lower–Middle Cambrian mainly developed in a fluctuating salinity, weak anoxic to anoxic, continuous dry and hot, and proper shallow water environment. The interfingering section of evaporites, carbonates, and claystones of the Awatag Fm. have higher paleoproductivity and higher enrichment of organic matter. Paleosalinity, redox, paleoclimate, paleo-seawater depth, and paleoproductivity jointly control the organic matter enrichment of shallow water source rocks in the evaporite series. The degree of enrichment of organic matter in shallow water source rocks first increases and then decreases with the increase in paleosalinity. All the samples with high content of organic matter come from the shallower environment of the Awatag Fm.


2015 ◽  
Vol 154 (1) ◽  
pp. 1-23 ◽  
Author(s):  
HOSSAM A. TAWFIK ◽  
IBRAHIM M. GHANDOUR ◽  
WATARU MAEJIMA ◽  
JOHN S. ARMSTRONG-ALTRIN ◽  
ABDEL-MONEM T. ABDEL-HAMEED

AbstractCombined petrographic and geochemical methods are utilized to investigate the provenance, tectonic setting, palaeo-weathering and climatic conditions of the Cambrian Araba clastic sediments of NE Egypt. The ~ 60 m thick Araba Formation consists predominantly of sandstone and mudstone interbedded with conglomerate. Petrographically the Araba sandstones are mostly sub-mature and classified as subarkoses with an average framework composition of Q80F14L6. The framework components are dominated by monocrystalline quartz with subordinate K-feldspar, together with volcanic and granitic rock fragments. XRD analysis demonstrated that clay minerals comprise mixed-layer illite/smectite (I/S), illite and smectite, with minor kaolinite. Diagenetic features of the sandstone include mechanical infiltration of clay, mechanical and chemical compaction, cementation, dissolution and replacement of feldspars by carbonate cements and clays. The modal composition and geochemical parameters (e.g. Cr/V, Y/Ni, Th/Co and Cr/Th ratios) of the sandstones and mudstones indicate that they were derived from felsic source rocks, probably from the crystalline basement of the northern fringe of the Arabian–Nubian Shield. The study reveals a collisional tectonic setting for the sediments of the Araba Formation. Palaeo-weathering indices such as the chemical index of alteration (CIA), chemical index of weathering (CIW) and plagioclase index of alteration (PIA) of the clastic sediments suggest that the source area was moderately chemically weathered. On the northern margin of Gondwana, early Palaeozoic weathering occurred under fluctuating climatic conditions.


2012 ◽  
Vol 63 (4) ◽  
pp. 319-333 ◽  
Author(s):  
Paweł Kosakowski ◽  
Dariusz Więcław ◽  
Adam Kowalski ◽  
Yuriy Koltun

Assessment of hydrocarbon potential of Jurassic and Cretaceous source rocks in the Tarnogród-Stryi area (SE Poland and W Ukraine) The Jurassic/Cretaceous stratigraphic complex forming a part of the sedimentary cover of both the eastern Małopolska Block and the adjacent Łysogóry-Radom Block in the Polish part as well as the Rava Rus'ka and the Kokhanivka Zones in the Ukrainian part of the basement of the Carpathian Foredeep were studied with geochemical methods in order to evaluate the possibility of hydrocarbon generation. In the Polish part of the study area, the Mesozoic strata were characterized on the basis of the analytical results of 121 core samples derived from 11 wells. The samples originated mostly from the Middle Jurassic and partly from the Lower/Upper Cretaceous strata. In the Ukrainian part of the study area the Mesozoic sequence was characterized by 348 core samples collected from 26 wells. The obtained geochemical results indicate that in both the south-eastern part of Poland and the western part of Ukraine the studied Jurassic/Cretaceous sedimentary complex reveals generally low hydrocarbon source-rock potential. The most favourable geochemical parameters: TOC up to 26 wt. % and genetic potential up to 39 mg/g of rock, were found in the Middle Jurassic strata. However, these high values are contradicted by the low hydrocarbon index (HI), usually below 100 mg HC/g TOC. Organic matter from the Middle Jurassic strata is of mixed type, dominated by gas-prone, Type III kerogen. In the Polish part of the study area, organic matter dispersed in these strata is generally immature (Tmax below 435 °C) whereas in the Ukrainian part maturity is sufficient for hydrocarbon generation.


2020 ◽  
Vol 4 (1) ◽  
pp. 1-13
Author(s):  
Aboglila S

Drill cutting samples (n = 92) from the Devonian Awaynat Wanin Formation and Silurian Tanezzuft Formation, sampled from three wells F1, G1 and H1, locate in the northern edge of the Murzuq basin (approximately 700 kilometers south of Tripoli). The studied samples were analyzed in the objective of their organic geochemical assessment such as the type of organic matter, depositional conditions and thermal maturity level. A bulk geochemical parameters and precise biomarkers were estimated, using chromatography-mass spectrometry (GC-MS) to reveal a diversity of their geochemical characterizations. The rock formations are having varied organic matter contents, ranged from fair to excellent. The total organic carbon (TOC) reached about 9.1 wt%, ranging from 0.6 to 2.93 wt% (Awaynat Wanin), 0.5 to 2.54 wt% (Tanezzuft) and 0.52 to 9.1 wt% (Hot Shale). The cutting samples are ranged oil-prone organic matter (OM) of hydrogen index (HI) ranged between 98 –396 mg HC/g TOC, related kerogen types are type II and II/III, with oxygen index (OI): 6 - 190 with one sample have value of 366 mg CO2/g. Thermal maturity of these source rocks is different, ranging from immature to mature and oil window in the most of Tanezzuft Formation and Hot Shale samples, as reflected from the production index data (PI: 0.08 - 034). Tmax and vitrinite reflectance Ro% data (Tmax: 435 – 454 & Ro%: 0.46 - 1.38) for the Awaynat Wanin. Biomarker ratios of specific hydrocarbons extracted from represented samples (n = 9), were moreover used to study thermal maturity level and depositional environments. Pristine/Phytane (Pr/Ph) ratios of 1.65 - 2.23 indicated anoxic to suboxic conditions of depositional marine shale and lacustrine source rock.


2004 ◽  
Vol 23 (2) ◽  
pp. 148-154 ◽  
Author(s):  
Bingsong Yu ◽  
Dong Hailiang ◽  
Jianqiang Chen ◽  
Xiaolin Chen ◽  
Shiyou Liang

2018 ◽  
Vol 65 (4) ◽  
pp. 207-218
Author(s):  
Ohanyiri C. Chiemezie ◽  
Omotowo B. Aminat

AbstractGeochemical studies of claystone deposits from the Patti Formation in the southern Bida Basin, north-Central Nigeria, were carried out on representative samples to determine the basin’s depositional conditions, provenance and tectonic setting. The localities within the study area included Gegu, Ahoko, Ahoko-Etigi, Omu and Idu.Semi-quantitative phase analysis using the Rietveld method and X-ray powder diffraction data revealed that the claystone samples had prominent kaolinite with other constituents such as quartz, illite–muscovite, K-feldspar, pyrite, marcasite, anatase, rutile and gorceixite.Enrichment of Al2O3, Ba, Th, Sr, Cr and La suggests that these elements are primarily controlled by the dominant clay minerals.Geochemical parameters such as U, U/Th, Ni/Co, V/Cr and Cu/Zn ratios strongly implied that these claystones were deposited in an oxidising environment. Provenance deducing ratios for felsic, mafic and basic igneous rocks were compared. Al2O3/TiO2 ratio suggested intermediate to felsic rocks as the probable source rocks for the claystone samples; however, Y/Ni, Cr/V, La/Sc and Th/Sc ratios suggested a felsic progenitor. The tectonic discrimination diagram showed that the samples’ plot was within the region specified for passive margin-type tectonic setting.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Qian Deng ◽  
Haizu Zhang ◽  
Haozhe Wang ◽  
Zhiwei Wei ◽  
Bin Cheng ◽  
...  

A large amount of light crude oils have been found within 4000 to 7000 m deep strata of Cambrian, Ordovician, and Silurian reservoirs in the Tarim Basin, NW China. To enhance the understanding of parental materials of deep oils, a set of high-quality source rocks from the Yuertusi Formation in well Luntan 1 (maximum drilling depth of 8882 m) was studied in terms of their sedimentary condition and mechanism of organic matter enrichment. Total organic carbon (TOC) content, carbon isotope of kerogen (δ13Cker), and major and trace elements of the rocks from the Sinian Qigebulake, Cambrian Yuertusi, and Xiaoerbulake Formations in well Luntan 1 were analysed. The results showed that the δ13Cker value of the Yuertusi Formation barely changed with an average of -31.19‰. High TOC contents accompanied by enrichments of the bioessential trace elements, such as cadmium, chromium, copper, nickel, and zinc, occurred in the lower part of the Yuertusi Formation. Excess barium (Baxs) and phosphorus concentrations revealed high primary productivity during the deposition of the Yuertusi Formation. Moreover, variations in the enrichment factors of molybdenum, uranium, and vanadium and molybdenum-uranium covariation pattern indicated suboxic-anoxic conditions in the Qigebulake Formation, anoxic-euxinic conditions in the Yuertusi Formation, and suboxic-oxic conditions in the Xiaoerbulake Formation. The TOC contents were significantly correlated with the paleoproductivity and paleoredox parameters, indicating that high productivity and reducing conditions jointly controlled the organic matter accumulation and preservation in well Luntan 1.


2021 ◽  
Vol 9 ◽  
Author(s):  
Zhaolin Qi ◽  
Yalin Li ◽  
Chengshan Wang

The Qamdo Basin in eastern Tibet has significant petroleum potential and previous studies indicate that the basin contains thick potential source rocks of the Late Permian and the Late Triassic ages. In this paper, the petroleum potential of samples from measured the Upper Permian and Upper Triassic outcrop sections was evaluated on the basis of sedimentological, organic petrographic and geochemical analyses. Initial evaluations of total organic carbon contents indicated that shale samples from the Upper Permian Tuoba Formation and the Upper Triassic Adula and Duogala Formations have major source rock potential, while carbonate rocks from the Upper Triassic Bolila Formation are comparatively lean in organic matter More detailed analyses of OM-rich shale samples from the Tuoba, Adula and Duogala Formations included Rock-eval, elemental analyses, gas chromatography and organic petrography. Maceral compositions and plots of atomic O/C versus H/C indicate that the organic matter present in the samples is primarily Type II with a mixed source. Analyses of acyclic isoprenoid biomarkers indicate the organic matter was deposited under reducing and sub-to anoxic conditions. Based on the high vitrinite reflectance (Ro>1.3%) and Rock-eval data, the samples are classified as highly to over-mature, suggesting that the Tuoba, Adula and Duogaila Formation shales may generate thermogenic gas. Source rock intervals in the three formations are interpreted to have been deposited in marginal-marine environment during transgressions and under a warm and moist climatic condition.


Sign in / Sign up

Export Citation Format

Share Document