Development and Evaluation of a Hydrometeorological Forecasting System Using the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Model

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Jing Zou ◽  
Chesheng Zhan ◽  
Haiqing Song ◽  
Tong Hu ◽  
Zhijin Qiu ◽  
...  

In this study, an experimental hydrometeorological forecasting system was developed based on the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) model. The system downloads global real-time ocean, atmosphere, and wave forcing data, producing regional forecasts every day. A coastal area in South China, encompassing Hainan Island, Leizhou Peninsula, and surrounding sea areas, was chosen as the study domain. A series of 72-hour forecasting simulations were conducted in the area, lasting from July 27 to August 31, 2019. The forecasts throughout August were chosen for evaluation with station observations, along with two sets of reanalysis data, ERA5 and CLDAS. The evaluation results revealed that the COAWST model had high potential for routine forecasting operations. The 24 h forecasts, with a lead time of 24 hours, had high accuracy, while the 48 h and 72 h forecasts did not differ greatly in terms of performance. The distributions of bias between forecast and reanalysis data showed obvious differences between land and sea, with more forecasted precipitation and lower temperatures in land grids than in sea grids. In most cases, the forecasts were closer to ERA5 in terms of means and other statistical measures. The forecasts enlarged the land-sea differences of temperature when compared with ERA5 and strengthened summer monsoon with more moisture transported to land areas. Resulting from that, a forecasted bias of lower surface pressure, higher air humidity, stronger south wind, and so forth was also detected over the domain but at low values.

2021 ◽  
Author(s):  
Min-Jee Kang ◽  
Hye-Yeong Chun

Abstract. In January 2020, unexpected easterly winds developed in the downward-propagating westerly quasi-biennial oscillation (QBO) phase. This event corresponds to the second QBO disruption in history, and it occurred four years after the first disruption that occurred in 2015/16. According to several previous studies, strong midlatitude Rossby waves propagating from the Southern Hemisphere (SH) during the SH winter likely initiated the disruption; nevertheless, the wave forcing that finally led to the disruption has not been investigated. In this study, we examine the role of equatorial waves and small-scale convective gravity waves (CGWs) in the 2019/20 QBO disruption using MERRA-2 global reanalysis data. In June–September 2019, unusually strong Rossby wave forcing originating from the SH decelerated the westerly QBO at 0°–5° N at ~50 hPa. In October–November 2019, vertically (horizontally) propagating Rossby waves and mixed Rossby–gravity (MRG) waves began to increase (decrease). From December 2019, contribution of the MRG wave forcing to the zonal wind deceleration was the largest, followed by the Rossby wave forcing originating from the Northern Hemisphere and the equatorial troposphere. In January 2020, CGWs provided 11 % of the total negative wave forcing at ~43 hPa. Inertia–gravity (IG) waves exhibited a moderate contribution to the negative forcing throughout. Although the zonal-mean precipitation was not significantly larger than the climatology, convectively coupled equatorial wave activities were increased during the 2019/20 disruption. As in the 2015/16 QBO disruption, the increased barotropic instability at the QBO edges generated more MRG waves at 70–90 hPa, and westerly anomalies in the upper troposphere allowed more westward IG waves and CGWs to propagate to the stratosphere. Combining the 2015/16 and 2019/20 disruption cases, Rossby waves and MRG waves can be considered the key factors inducing QBO disruption.


2019 ◽  
Author(s):  
Yuki Matsushita ◽  
Daiki Kado ◽  
Masashi Kohma ◽  
Kaoru Sato

Abstract. Focusing on the interannual variabilities in the zonal mean fields and Rossby wave forcing in austral winter, an interhemispheric coupling in the stratosphere is examined using reanalysis data: the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). In the present study, the Eliassen-Palm (EP) flux divergence averaged over the latitude and height regions of 50°–30° S and 0.3–1 hPa, respectively, are used as a proxy of the Rossby wave forcing, where the absolute value of the EP flux divergence is maximized in the winter in the Southern Hemisphere (SH). The interannual variabilities in the zonal mean temperature and zonal wind are significantly correlated with the SH Rossby wave forcing in the stratosphere in both the SH and Northern Hemisphere (NH). The interannual variability in the strength of the poleward residual mean flow in the SH stratosphere is also correlated with the strength of the wave forcing. This correlation is significant even around the equator at an altitude of 40 km and at NH low latitudes of 20–40 km. The temperature anomaly is consistent with this residual mean flow anomaly. The relationship between the cross-equatorial flow and the zonal mean absolute angular momentum gradient (My) is examined in the meridional cross section. The My around the equator at the altitude of 40 km is small when the wave forcing is strong, which provides a pathway for the cross-equatorial residual mean flow. These results indicate that an interhemispheric coupling is present in the stratosphere through the meridional circulation modulated by the Rossby wave forcing.


2020 ◽  
Author(s):  
Min-Jee Kang ◽  
Hye-Yeong Chun ◽  
Rolando R. Garcia

Abstract. In February 2016, the descent of the westerly phase of the quasi-biennial oscillation (QBO) was unprecedentedly disrupted by the development of easterly winds. Previous studies have shown that extratropical Rossby waves propagating into the deep Tropics were the major cause of the 2015–16 QBO disruption. However, a large portion of the negative momentum forcing associated with the disruption still stems from equatorial planetary and small-scale gravity waves, which calls for detailed analyses by separating each wave mode compared with climatological QBO cases. Here, the contributions of resolved equatorial planetary waves [Kelvin, Rossby, mixed-Rossby gravity (MRG), and inertia-gravity (IG) waves] and small-scale convective gravity waves (CGWs) obtained from an offline CGW parameterization to the 2015–16 QBO disruption are investigated using MERRA-2 global reanalysis data from October 2015 to February 2016. In October and November 2015, anomalously strong negative forcing by MRG and IG waves weakened the QBO jet at 0°–5° S near 40 hPa, leading to Rossby wave breaking at the QBO jet core in the southern hemisphere. From December 2015 to January 2016, exceptionally strong Rossby waves propagating horizontally (vertically) continuously decelerated the southern (northern) flank of the jet. In February 2016, when the westward CGW momentum flux at the source level was much stronger than its climatology, CGWs began to exert considerable negative forcing at 40–50 hPa near the equator, in addition to the Rossby waves. The enhancement of the negative wave forcing in the Tropics stems mostly from strong wave activity in the troposphere associated with increased convective activity and the strong westerlies (or weaker easterlies) in the troposphere, except that the MRG wave forcing is more likely associated with increased barotropic instability in the lower stratosphere.


2020 ◽  
Vol 13 (11) ◽  
pp. 5211-5228
Author(s):  
Tarandeep S. Kalra ◽  
Neil K. Ganju ◽  
Jeremy M. Testa

Abstract. The coupled biophysical interactions between submerged aquatic vegetation (SAV), hydrodynamics (currents and waves), sediment dynamics, and nutrient cycling have long been of interest in estuarine environments. Recent observational studies have addressed feedbacks between SAV meadows and their role in modifying current velocity, sedimentation, and nutrient cycling. To represent these dynamic processes in a numerical model, the presence of SAV and its effect on hydrodynamics (currents and waves) and sediment dynamics was incorporated into the open-source Coupled Ocean–Atmosphere–Wave–Sediment Transport (COAWST) model. In this study, we extend the COAWST modeling framework to account for dynamic changes of SAV and associated epiphyte biomass. Modeled SAV biomass is represented as a function of temperature, light, and nutrient availability. The modeled SAV community exchanges nutrients, detritus, dissolved inorganic carbon, and dissolved oxygen with the water-column biogeochemistry model. The dynamic simulation of SAV biomass allows the plants to both respond to and cause changes in the water column and sediment bed properties, hydrodynamics, and sediment transport (i.e., a two-way feedback). We demonstrate the behavior of these modeled processes through application to an idealized domain and then apply the model to a eutrophic harbor where SAV dieback is a result of anthropogenic nitrate loading and eutrophication. These cases demonstrate an advance in the deterministic modeling of coupled biophysical processes and will further our understanding of future ecosystem change.


2003 ◽  
Vol 10 (3) ◽  
pp. 245-251 ◽  
Author(s):  
M. Peña ◽  
E. Kalnay ◽  
M. Cai

Abstract. We apply a simple dynamical rule to determine the dominant forcing direction in locally coupled ocean-atmosphere anomalies in the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/ NCAR) reanalysis data. The rule takes into account the phase relationship between the low-level vorticity anomalies and the Sea Surface Temperature (SST) anomalies. Analysis of the frequency of persistent coupled anomalies for five-day average data shows that, in general, the ocean tends to force the atmosphere in the tropics while the atmosphere tends to force the ocean in the extratropics. The results agree well with those obtained independently using lagged correlations between atmospheric and oceanic variables, suggesting that the dynamical rule is generally valid. A similar procedure carried out using data from the NCEP global model run with prescribed SST (in which the coupling is one-way, with the ocean always forcing the atmosphere) produces fewer coupled anomalies in the extratropics. They indicate, not surprisingly, an increase in ocean-driving anomalies in the model. In addition, and very importantly, there is a strong reduction of persistent atmosphere-driving anomalies, indicating that the one-way interaction of the ocean in the model run may provide a spurious negative feedback that damps atmospheric anomalies faster than observed.


Author(s):  
Ryan S. Mieras ◽  
Jack A. Puleo ◽  
Dylan Anderson ◽  
Daniel T. Cox ◽  
Tian-Jian Hsu ◽  
...  

The majority of prior sandbar migration studies have been conducted from the morphological standpoint, whereby, (i) bathymetric profiles are recorded over periods of time ranging from days to decades, at frequencies ranging from hourly to yearly (Ruessink et al., 2003), and (ii) hydrodynamic observations typically consist of far-field wave and environmental conditions. Subsequent modeling efforts have generally focused on tuning parameters in the sediment transport formulations (suspended load and bed load) to maximize model skill in predicting observed beach profiles over time (Fernández-Mora et al., 2015; Hoefel and Elgar, 2003). However, little emphasis at the operational level has been placed on tuning coastal morphology models to the true relative contributions of the physical processes (e.g. suspended load, bed load and/or sheet flow) that drive the changing bathymetry. This is due, in part, to the lack of detailed sediment transport observations (field and lab) under realistic wave forcing conditions and spatially variable bathymetry. Such a modeling approach leads to the improper quantification (magnitude and/or direction) of each modeled sediment transport component under skewed-asymmetric and/or breaking waves, often observed in the surf zone. The present study aims to better understand the physical mechanisms responsible for driving cross-shore sediment transport over a sandbar by quantifying (a) the vertical exchange of sediment at the near-bed interface (i.e. pick-up layer), and (b) intra-wave horizontal sediment fluxes in the suspended load and sheet layers.


2018 ◽  
Author(s):  
Antje Inness ◽  
Melanie Ades ◽  
Anna Agusti-Panareda ◽  
Jérôme Barré ◽  
Anna Benedictow ◽  
...  

Abstract. The Copernicus Atmosphere Monitoring Service (CAMS) reanalysis is the latest global reanalysis data set of atmospheric composition produced by the European Centre for Medium-Range Weather Forecasts (ECMWF), consisting of 3-dimensional time-consistent atmospheric composition fields, including aerosols and chemical species. The dataset currently covers the period 2003–2016 and will be extended in the future by adding one year each year. A reanalysis for greenhouse gases is being produced separately. The CAMS reanalysis builds on the experience gained during the production of the earlier Monitoring Atmospheric Composition and Climate (MACC) reanalysis and CAMS interim reanalysis. Satellite retrievals of total column CO, tropospheric column NO2, aerosol optical depth and total column, partial column and profile ozone retrievals were assimilated for the CAMS reanalysis with ECMWF’s Integrated Forecasting System. The new reanalysis has an increased horizontal resolution of about 80 km and provides more chemical species at a better temporal resolution (3-hourly analysis fields, 3-hourly forecast fields and hourly surface forecast fields) than the previously produced CAMS interim reanalysis. The CAMS reanalysis has smaller biases compared to independent ozone, carbon monoxide, nitrogen dioxide and aerosol optical depth observations than the previous two reanalyses and is much improved and more consistent in time, especially compared to the MACC reanalysis. The CAMS reanalysis is a dataset that can be used to compute climatologies, study trends, evaluate models, benchmark other reanalyses or serve as boundary conditions for regional models for past periods.


Sign in / Sign up

Export Citation Format

Share Document