scholarly journals Hydrogeochemistry and Groundwater Quality Assessment in the High Agri Valley (Southern Italy)

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
M. Paternoster ◽  
R. Buccione ◽  
F. Canora ◽  
D. Buttitta ◽  
S. Panebianco ◽  
...  

The High Agri Valley (southern Italy) is one of the largest intermontane basin of the southern Apennines affected by intensive agricultural and industrial activities. The study of groundwater chemical features provides much important information useful in water resource management. In this study, hydrogeochemical investigations coupled with multivariate statistics, saturation indices, and stable isotope composition (δD and δ18O) were conducted in the High Agri Valley to determine the chemical composition of groundwater and to define the geogenic and anthropogenic influences on groundwater quality. Twenty-four sampling point ( including well and spring waters) have been examined. The isotopic data revealed that groundwater has a meteoric origin. Well waters, located on recent alluvial-lacustrine deposits in shallow porous aquifers at the valley floor, are influenced by seasonal rainfall events and show shallow circuits; conversely, spring waters from fissured and/or karstified aquifers are probably associated to deeper and longer hydrogeological circuits. The R -mode factor analysis shows that three factors explain 94% of the total variance, and F1 represents the combined effect of dolomite and silicate dissolution to explain most water chemistry. In addition, very low contents of trace elements were detected, and their distribution was principally related to natural input. Only two well waters, used for irrigation use, show critical issue for NO3- concentrations, whose values are linked to agricultural activities. Groundwater quality strongly affects the management of water resources, as well as their suitability for domestic, agricultural, and industrial uses. Overall, our results were considered fulfilling the requirements for the inorganic component of the Water Framework Directive and Italian legislation for drinking purposes. The water quality for irrigation is from “good to permissible” to “excellent to good” although salinity and relatively high content of Mg2+ can occasionally be critical.

Water ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1477 ◽  
Author(s):  
Davide De Luca ◽  
Luciano Galasso

This study tests stationary and non-stationary approaches for modelling data series of hydro-meteorological variables. Specifically, the authors considered annual maximum rainfall accumulations observed in the Calabria region (southern Italy), and attention was focused on time series characterized by heavy rainfall events which occurred from 1 January 2000 in the study area. This choice is justified by the need to check if the recent rainfall events in the new century can be considered as very different or not from the events occurred in the past. In detail, the whole data set of each considered time series (characterized by a sample size N > 40 data) was analyzed, in order to compare recent and past rainfall accumulations, which occurred in a specific site. All the proposed models were based on the Two-Component Extreme Value (TCEV) probability distribution, which is frequently applied for annual maximum time series in Calabria. The authors discussed the possible sources of uncertainty related to each framework and remarked on the crucial role played by ergodicity. In fact, if the process is assumed to be non-stationary, then ergodicity cannot hold, and thus possible trends should be derived from external sources, different from the time series of interest: in this work, Regional Climate Models’ (RCMs) outputs were considered in order to assess possible trends of TCEV parameters. From the obtained results, it does not seem essential to adopt non-stationary models, as significant trends do not appear from the observed data, due to a relevant number of heavy events which also occurred in the central part of the last century.


2012 ◽  
Vol 8 (5) ◽  
pp. 1457-1471 ◽  
Author(s):  
T. J. Daley ◽  
D. Mauquoy ◽  
F. M. Chambers ◽  
F. A. Street-Perrott ◽  
P. D. M. Hughes ◽  
...  

Abstract. Ombrotrophic raised peatlands provide an ideal archive for integrating late Holocene records of variations in hydroclimate and the estimated stable isotope composition of precipitation with recent instrumental measurements. Modern measurements of mean monthly surface air temperature, precipitation, and δD and δ18O-values in precipitation from the late twentieth and early twenty-first centuries provide a short but invaluable record with which to investigate modern relationships between these variables, thereby enabling improved interpretation of the peatland palaeodata. Stable isotope data from two stations in the Global Network for Isotopes in Precipitation (GNIP) from southern South America (Punta Arenas, Chile and Ushuaia, Argentina) were analysed for the period 1982 to 2008 and compared with longer-term meteorological data from the same locations (1890 to present and 1931 to present, respectively). δD and δ18O-values in precipitation have exhibited quite different trends in response to local surface air temperature and precipitation amount. At Punta Arenas, there has been a marked increase in the seasonal difference between summer and winter δ18O-values. A decline in the deuterium excess of summer precipitation at this station was associated with a general increase in relative humidity at 1000 mb over the surface of the Southeast Pacific Ocean, believed to be the major vapour source for the local precipitation. At Ushuaia, a fall in δ18O-values was associated with an increase in the mean annual amount of precipitation. Both records are consistent with a southward retraction and increase in zonal wind speed of the austral westerly wind belt. These regional differences, observed in response to a known driver, should be detectable in peatland sites close to the GNIP stations. Currently, insufficient data with suitable temporal resolution are available to test for these regional differences over the last 3000 yr. Existing peatland palaeoclimate data from two sites near Ushuaia, however, provide evidence for changes in the late Holocene that are consistent with the pattern observed in modern observations.


2015 ◽  
Vol 3 (6) ◽  
pp. 3579-3619
Author(s):  
S. L. Gariano ◽  
O. Petrucci ◽  
F. Guzzetti

Abstract. We exploit a catalogue of 1466 rainfall events with landslides in the 90 year period 1921–2010 to study temporal and geographical variations in the occurrence of landslides in Calabria, Southern Italy. We use daily rainfall records obtained by a network of 318 rain gauges to reconstruct 448 493 rainfall events. Combining the rainfall and the landslide information, we obtain a catalogue of 1466 rainfall events with landslides (REL) in Calabria from 1921 to 2010, where a REL is the occurrence of one or more landslide during or immediately after a rainfall event. We find that the geographical and the temporal distributions of the rainfall-induced landslides have changed in the observation period. The average and the maximum values of the cumulated event rainfall that have resulted in landslides in the recent-most 30 year period 1981–2010 are lower than the values necessary to trigger landslides in previous periods, whereas the duration of the rainfall events that triggered landslides has remained the same. This can be considered evidence of variations in rainfall conditions, but also an increase in the vulnerability of the territory. We further find that the yearly distribution of rainfall-induced landslides has changed in the observation period, analysing the variations in the number of rainfall events with landslides occurred in each month in three 30 year periods. To investigate variations in the impact of REL on the population, we compared the number of REL in each of the 409 municipalities in Calabria, with the size of the population in the municipalities, measured by national Censuses conducted in 1951, 1981, and 2011. For the purpose, we adopted two strategies. The first strategy considered impact as IREL = #REL/P and the second strategy measured impact as RREL = #REL × P, where #REL is the total number of REL in a period, and P is the size of the population in the same period and geographical area. Considering the entire observation period, IREL and RREL have both increased in Calabria. However, considering the changes between the recent period 1981–2010 and the previous period 1951–1980, results are more variegated with a number of municipalities where IREL and RREL have increased, or decreased. Municipalities where IREL has increased are mainly in the mountains, and municipalities where RREL has increased are mainly along the coasts.


2010 ◽  
Vol 44 (2) ◽  
pp. 125-135 ◽  
Author(s):  
MICHELE PATERNOSTER ◽  
SERENA PARISI ◽  
ANTONIO CARACAUSI ◽  
ROCCO FAVARA ◽  
GIOVANNI MONGELLI

Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1560 ◽  
Author(s):  
Paola Revellino ◽  
Luigi Guerriero ◽  
Neri Mascellaro ◽  
Francesco Fiorillo ◽  
Gerardo Grelle ◽  
...  

In October 2015, two intense rainfall events hit the central and southern regions of Italy and triggered a combination of different and widespread effects, including floods, landslides, and soil erosion. These outcomes devastated about 68 municipalities of the Benevento province (Campania region), killed two people, and caused millions of euros worth of damage to structures, infrastructures, and agriculture. The town of Benevento was one of the sectors most affected by overflow. Extensive areas characterized by flyschoid outcrops experienced widespread occurrences of soil erosion and landslides, and destructive, high-velocity debris flows (about 50) afflicted areas that had experienced heavy rainfall of higher intensity (total rainfall of 415.6 mm). In this study, the characteristics of these rainfall events and related geomorphological processes were determined by (i) analyzing the available rainfall data to identify the spatial pattern, distribution, and statistical characteristics of the two storms and (ii) mapping the storm effects, such as flooded areas, landslide types, and soil erosion. These effects were then related to the spatial distribution of the storms and the local geological and geomorphologic settings that drove their initiation and development.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2916
Author(s):  
Nicola Pastore ◽  
Claudia Cherubini ◽  
Angelo Doglioni ◽  
Concetta Immacolata Giasi ◽  
Vincenzo Simeone

We analyzed the complex dynamics that are involved the groundwater level variations due to the episodic rainfall supply in the Ionian coastal plain surficial aquifer located in Southern Italy. In this aquifer, as a consequence of the particular hydrogeological framework, both direct and lateral recharge mechanisms coexist. Hence, the dynamics of groundwater level variations are quite complex and strongly non-linear. Our focus was essentially on the short-term behavior of groundwater levels, with a specific analysis on episodic rainfall events. To model these dynamics, due to the presence of the preferential pathways in the infiltration processes, a kinematic dispersion wave model was used. Specifically, a one-dimensional and non-linear particle-based numerical model was developed. It uses ideal particles with constant water volume travel, according to celerity and hydraulic dispersion, to simulate the infiltration rate wave through the vadose zone. The infiltration rate that reaches the water table represents the input function to evaluate the aquifer groundwater level fluctuations. As a consequence of the special lithological and storage capacity characteristics of the surficial layers, groundwater flow conditions change from unconfined to confined. The developed model analyzes the direct groundwater supply under natural conditions, including episodic rainfall, and it has been validated using a high-resolution time series of rainfall data and groundwater level obtained from the monitoring station Terra Montonata.


2016 ◽  
Vol 9 (5) ◽  
pp. 10 ◽  
Author(s):  
Angula Nahas Enkono ◽  
Alfons W Mosimane

<span lang="EN-US">Challenges of water supply in informal settlements have been observed in different parts of the world. This study evaluates accessibility to water in the Kuvukiland informal settlement. The study employed two methods</span><span lang="EN-ZA">:</span><span lang="EN-US"> a semi structured questionnaire and in-depth interviews. Semi-structured questionnaire was used to collect the data from 50 respondents in the Kuvukiland informal settlement, and the in-depth interviews were carried out with five key informants. The findings suggest that access to water in informal settlements is a challenge, because more than half of the population in Kuvukiland live more than a kilometre from the water points. Further findings also show that affordability is a critical issue, because the more than half of the population are unemployed, and as a result they cannot afford to pay for water. Finally the findings are that, water supply in Kuvukiland does not follow an integrated water resource management approach. In addition, there is poor community involvement, and stakeholder participation is weak.</span>


2014 ◽  
Vol 14 (2) ◽  
pp. 317-330 ◽  
Author(s):  
C. Vennari ◽  
S. L. Gariano ◽  
L. Antronico ◽  
M. T. Brunetti ◽  
G. Iovine ◽  
...  

Abstract. In many areas, rainfall is the primary trigger of landslides. Determining the rainfall conditions responsible for landslide occurrence is important, and may contribute to saving lives and properties. In a long-term national project for the definition of rainfall thresholds for possible landslide occurrence in Italy, we compiled a catalogue of 186 rainfall events that resulted in 251 shallow landslides in Calabria, southern Italy, from January 1996 to September 2011. Landslides were located geographically using Google Earth®, and were given a mapping and a temporal accuracy. We used the landslide information, and sub-hourly rainfall measurements obtained from two complementary networks of rain gauges, to determine cumulated event vs. rainfall duration (ED) thresholds for Calabria. For this purpose, we adopted an existing method used to prepare rainfall thresholds and to estimate their associated uncertainties in central Italy. The regional thresholds for Calabria were found to be nearly identical to previous ED thresholds for Calabria obtained using a reduced set of landslide information, and slightly higher than the ED thresholds obtained for central Italy. We segmented the regional catalogue of rainfall events with landslides in Calabria into lithology, soil regions, rainfall zones, and seasonal periods. The number of events in each subdivision was insufficient to determine reliable thresholds, but allowed for preliminary conclusions about the role of the environmental factors in the rainfall conditions responsible for shallow landslides in Calabria. We further segmented the regional catalogue based on administrative subdivisions used for hydro-meteorological monitoring and operational flood forecasting, and we determined separate ED thresholds for the Tyrrhenian and the Ionian coasts of Calabria. We expect the ED rainfall thresholds for Calabria to be used in regional and national landslide warning systems. The thresholds can also be used for landslide hazard and risk assessments, and for erosion and landscape evolution studies, in the study area and in similar physiographic regions in the Mediterranean area.


2000 ◽  
Vol 79 (4) ◽  
pp. 459-466 ◽  
Author(s):  
M.H.G. van Sambeek ◽  
H.G.M. Eggenkamp ◽  
M.J.M. Vissers

AbstractThe Groundwater resources on the Caribbean Islands of Aruba, Bonaire and Curaçao are limited and of poor quality. The groundwater of the islands is brackish, due to both seawater mixing and the semi-arid climate of the islands. Two hundred and thirty water samples were collected to relate chemical variations in the groundwater of the three islands to the underlying differences in geology, and to define the natural versus anthropogenic influences. Both the chemical and isotopic (δ180, δD, and δ37Cl) compositions of samples were determined.Several geochemical processes are recognised in the chemistry of the groundwater samples. The most important processes are calcite dissolution, cation exchange, silicate weathering and potassium fixation. In (sub)urban areas anthropogenic influences affect the groundwater quality: high nitrate concentrations were measured. Infiltrating domestic and agricultural (waste)water replenishes the aquifer, and has a desalinization effect on the groundwater quality. This phenomenon is primarily seen on Curaçao, the most populated island.Oxygen and hydrogen isotopie compositions of groundwaters from Curaçao and Bonaire show that the samples are either meteoric water, or are affected by evaporation or seawater mixing. No distinction could be made between the last two processes. Only a few samples were measured for the Cl-isotope composition; all showed that no physical processes have taken place.


Sign in / Sign up

Export Citation Format

Share Document