scholarly journals Anticancer Activity of Ipomoea purpurea Leaves Extracts in Monolayer and Three-Dimensional Cell Culture

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
F. Beheshti ◽  
A. A. Shabani ◽  
M. R. Akbari Eidgahi ◽  
P. Kookhaei ◽  
M. Vazirian ◽  
...  

Cancer is a leading cause of death and a vital health care challenge in the world. Hence, this work was conducted to determine the in vitro anticancer property and also the molecular mechanism of aqueous and organic extracts of Ipomoea purpurea leaves in three human cancer cell lines, including A-549 (human lung cancer), HepG-2 (human liver cancer), MDA-MB-231 (human breast cancer), and MCF-10A (breast normal cell line). In vitro cytotoxic potential of organic extracts, such as hexane, chloroform, ethyl-acetate, methanol, and aqueous extract was examined using a standard (3-(4,5-dimethylthiazole)-2,5-diphenyltetrazolium bromide) MTT method in both monolayer two-dimensional (2D) and spheroids multicellular three-dimensional (3D) cultures. The MTT assay data showed that methanol and chloroform extracts of I. purpurea leaves had the antiproliferative effect on lung and breast cancer cells with IC50 of 53.62 ± 0.07 and 124.5 ± 0.01 µg/mL, respectively. The results of further examinations, such as dual acridine orange/ethidium bromide, Annexin V-FITC/PI, and caspase-3 colorimetric assay, confirmed that methanol and chloroform extracts of I. purpurea as the most potent cytotoxic extracts might contain a variety of phytochemicals, promoting apoptosis in lung and breast cancer cells. The present research findings suggested that methanolic extract of I. purpurea leaves induced S-phase cell cycle arrest and intrinsic pathway of apoptosis in A-549 lung cancer cells. The study further showed that I. purpurea could be a helpful candidate for cancer treatment.

2019 ◽  
Vol 12 (2) ◽  
pp. 56 ◽  
Author(s):  
Wang ◽  
Malebari ◽  
Greene ◽  
O’Boyle ◽  
Fayne ◽  
...  

Microtubule-targeted drugs are essential chemotherapeutic agents for various types of cancer. A series of 3-vinyl-β-lactams (2-azetidinones) were designed, synthesized and evaluated as potential tubulin polymerization inhibitors, and for their antiproliferative effects in breast cancer cells. These compounds showed potent activity in MCF-7 breast cancer cells with an IC50 value of 8 nM for compound 7s 4-[3-Hydroxy-4-methoxyphenyl]-1-(3,4,5-trimethoxyphenyl)-3-vinylazetidin-2-one) which was comparable to the activity of Combretastatin A-4. Compound 7s had minimal cytotoxicity against both non-tumorigenic HEK-293T cells and murine mammary epithelial cells. The compounds inhibited the polymerisation of tubulin in vitro with an 8.7-fold reduction in tubulin polymerization at 10 M for compound 7s and were shown to interact at the colchicine-binding site on tubulin, resulting in significant G2/M phase cell cycle arrest. Immunofluorescence staining of MCF-7 cells confirmed that β-lactam 7s is targeting tubulin and resulted in mitotic catastrophe. A docking simulation indicated potential binding conformations for the 3-vinyl-β-lactam 7s in the colchicine domain of tubulin. These compounds are promising candidates for development as antiproiferative microtubule-disrupting agents.


2008 ◽  
Vol 25 (7) ◽  
pp. 741-752 ◽  
Author(s):  
Ravi Dhurjati ◽  
Venkatesh Krishnan ◽  
Laurie A. Shuman ◽  
Andrea M. Mastro ◽  
Erwin A. Vogler

2007 ◽  
Vol 28 (2) ◽  
pp. 687-704 ◽  
Author(s):  
Cameron N. Johnstone ◽  
Perry S. Mongroo ◽  
A. Sophie Rich ◽  
Michael Schupp ◽  
Mark J. Bowser ◽  
...  

ABSTRACT Parvin-β is a focal adhesion protein downregulated in human breast cancer cells. Loss of Parvin-β contributes to increased integrin-linked kinase activity, cell-matrix adhesion, and invasion through the extracellular matrix in vitro. The effect of ectopic Parvin-β expression on the transcriptional profile of MDA-MB-231 breast cancer cells, which normally do not express Parvin-β, was evaluated. Particular emphasis was placed upon propagating MDA-MB-231 breast cancer cells in three-dimensional culture matrices. Interestingly, Parvin-β reexpression in MDA-MB-231 cells increased the mRNA expression, serine 82 phosphorylation (mediated by CDK9), and activity of the nuclear hormone receptor peroxisome proliferator-activated receptor gamma (PPARγ), and there was a concomitant increase in lipogenic gene expression as a downstream effector of PPARγ. Importantly, Parvin-β suppressed breast cancer growth in vivo, with associated decreased proliferation. These data suggest that Parvin-β might influence breast cancer progression.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243789
Author(s):  
Yonghong Mao ◽  
Yang Zhao ◽  
Yong Zhang ◽  
Hao Yang

Native intact N-glycopeptide analysis can provide access to the comprehensive characteristics of N-glycan occupancy, including N-glycosites, N-glycan compositions, and N-glycoproteins for complex samples. The sample pre-processing method used for the analysis of intact N-glycopeptides usually depends on the enrichment of low abundance N-glycopeptides from a tryptic peptide mixture using hydrophilic substances before LC-MS/MS detection. However, the number of identified intact N-glycopeptides remains inadequate to achieve an in-depth profile of the N-glycosylation landscape. Here, we optimized the sample preparation workflow prior to LC-MS/MS analysis by systematically comparing different analytical methods, including the use of different sources of trypsin, combinations of different proteases, and different enrichment materials. Finally, we found that the combination of Trypsin (B)/Lys-C digestion and zwitterionic HILIC (Zic-HILIC) enrichment significantly improved the mass spectrometric characterization of intact N-glycopeptides, increasing the number of identified intact N-glycopeptides and offering better analytical reproducibility. Furthermore, the optimized workflow was applied to the analysis of intact N-glycopeptides in two-dimensional (2D) and three-dimensional (3D)-cultured breast cancer cells in vitro and xenografted tumors in mice. These results indicated that the same breast cancer cells, when cultured in different microenvironments, can show different N-glycosylation patterns. This study also provides an interesting comparison of the N-glycoproteome of breast cancer cells cultured in different growth conditions, indicating the important role of N-glycosylated proteins in cancer cell growth and the choice of the cell culture model for studies in tumor biology and drug evaluation.


2016 ◽  
Vol 2016 ◽  
pp. 1-8
Author(s):  
Soon Young Shin ◽  
Chang Gun Kim ◽  
Seunghyun Ahn ◽  
You Jung Jung ◽  
Dongsoo Koh ◽  
...  

Tumor invasion is a critical step in tumor metastasis. In this study, we synthesized a novel benzochalcone derivative, (E)-1-(2-hydroxy-6-methoxyphenyl)-3-(naphthalen-2-yl) prop-2-en-1-one (DK-512), and characterized its effects on tumor invasion and its mechanism of action. We found that DK-512 strongly inhibited invasion of metastatic MDA-MB-231 breast cancer cells as revealed by a three-dimensional spheroid culture system. Tumor invasion and metastasis require disruption of the extracellular matrix. Matrix metalloproteinase-9 (MMP-9) is an endopeptidase that degrades extracellular matrix components. DK-512 significantly reduced tumor necrosis factor-α- (TNFα-) induced MMP-9 mRNA expression through the inhibition of RelA nuclear factor- (NF-)κB transcription factor. As our study was assessedin vitro, further works aboutin vivoefficacy of DK-512 are needed to gain further insights into whether DK-512 could be utilized as a scaffold for the development of antimetastatic agents for breast cancer.


Gels ◽  
2020 ◽  
Vol 6 (1) ◽  
pp. 10 ◽  
Author(s):  
Sarah Chaji ◽  
Jenna Al-Saleh ◽  
Cheryl T. Gomillion

Three-dimensional (3D) bioprinting, although still in its infancy as a fabrication tool, has the potential to effectively mimic many biological environments. Cell-laden 3D printed structures have demonstrated to be an improvement from the widely used monolayer platforms, largely because of recapitulation of native tissue architecture with the 3D structures. Thus, 3D in vitro models have been increasingly investigated for improved modeling of cell and disease systems, such as for breast cancer. In the present work, multicellular cell-laden hydrogels comprised of adipocytes and breast cancer cells were bioprinted and evaluated. An ideal bioink of 3:2 5% alginate was determined to mimic the tissue stiffness observed in a physiological breast cancer tumor environment. Rheological characterization and degradation studies were performed to verify the stability of the artificial breast hydrogel environment. It was found that both the breast cancer cells and adipocytes remained viable directly after printing and throughout the 10-day culture period within the printed hydrogels. Direct printing of the cells in co-culture resulted in morphology changes and variations in cell localization within printed structures. Overall, the feasibility of efficiently fabricating multicellular cell-laden bioprinted models of the breast tumor microenvironment was established.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Girdhari Rijal ◽  
Chandra Bathula ◽  
Weimin Li

Preparation of three-dimensional (3D) porous scaffolds from synthetic polymers is a challenge to most laboratories conducting biomedical research. Here, we present a handy and cost-effective method to fabricate polymeric hydrogel and porous scaffolds using poly(lactic-co-glycolic) acid (PLGA) or polycaprolactone (PCL). Breast cancer cells grown on 3D polymeric scaffolds exhibited distinct survival, morphology, and proliferation compared to those on 2D polymeric surfaces. Mammary epithelial cells cultured on PLGA- or PCL-coated slides expressed extracellular matrix (ECM) proteins and their receptors. Estrogen receptor- (ER-) positive T47D breast cancer cells are less sensitive to 4-hydroxytamoxifen (4-HT) treatment when cultured on the 3D porous scaffolds than in 2D cultures. Finally, cancer cell-laden polymeric scaffolds support consistent tumor formation in animals and biomarker expression as seen in human native tumors. Our data suggest that the porous synthetic polymer scaffolds satisfy the basic requirements for 3D tissue cultures both in vitro and in vivo. The scaffolding technology has appealing potentials to be applied in anticancer drug screening for a better control of the progression of human cancers.


Sign in / Sign up

Export Citation Format

Share Document