scholarly journals Compressive Capacity of Vortex-Compression Nodular Piles

2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Chunbao Li ◽  
Xiaosong Ma ◽  
Shifeng Xue ◽  
Haiyang Chen ◽  
Pengju Qin ◽  
...  

Compared with traditional equal-section pile, the nodular parts of nodular pile expand the contact area between the pile and foundation soil, which can greatly improve the bearing capacity of pile foundation and increase the stability of pile body structure. In this paper, the mechanism of pile-soil interaction in the construction of vortex-compression nodular pile is studied with the purpose of evaluating the compressive capacity of nodular piles. Through the indoor model test and ABAQUS numerical simulation analysis, the compressive characteristics of 12 types of vortex-compression nodular pile are obtained, and the variation rules of the parameters of the compressive characteristics of vortex-compression nodular piles are quantitatively analyzed, including the failure pattern of foundation soil, load-settlement relationship, and load transfer law of vortex-compression nodular piles. The results showed that the compressive capacity of vortex-compression nodular piles has significant advantages over that of traditional equal-section piles. Based on the results of the indoor model test and numerical simulation, the calculation method and formula of the compressive capacity of vortex-compression nodular piles are given by modifying the corresponding calculation formula of traditional nodular piles. The new method and formula are more in line with the actual working conditions and provide theoretical and data support for the further engineering application of vortex-compression nodular piles.

2012 ◽  
Vol 588-589 ◽  
pp. 1781-1785
Author(s):  
Li Ping Zhao ◽  
Jian Qiu Zhang ◽  
Lei Chen ◽  
Xuan Xie ◽  
Jun Qiang Cheng

Studying the hydrodynamic characteristics of the sloping breakwater of circular protective facing by physical model test and taking a numerical simulation analysis of current field around the circular protective facing with holes under wave action by FLOW—3D.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Ang Li ◽  
Yuxuan Yang ◽  
Mingcheng Zhu ◽  
Wenzhong Zhang ◽  
Bingnan Ji ◽  
...  

It is an important problem in the mine water disaster prevention and control to control the large passage moving water. Traditional grouting technology is to put coarse aggregate and fine aggregate downward first and then grouting treatment. But the aggregate and cement flow distance is long, consumption is large, cost is high, and easy to appear secondary water inrush. Centering on the technical difficulties in the rapid construction of the blocking body of the moving water passage, a water-blocking textile bag was invented. The purpose of blocking the tunnel water inrush was achieved by grouting inside the bag body, which fundamentally realized the rapid blocking of the large passage through water under the condition of moving water. However, the mechanism, water plugging law, and design parameters of water blocking roadway with textile bag are still unclear. In this paper, the slip law and stability of the textile bag in the moving water and the deformation characteristics caused by the dynamic water pressure are theoretically analyzed and simulated. Through theoretical analysis, the ultimate antihydraulic stress value of a textile bag of a certain specification is calculated, and the parameters of the textile bag that affect the stability of the bag body are also determined. Xflow was used for numerical simulation analysis to study the deformation characteristics of the textile bag under water and the law of water barrier. The simulation analysis focuses on the water resistance effect and flow field distribution characteristics of the textile bag in the water passage under the condition of low flow rate and low pressure, as well as the stability and self-deformation characteristics of the textile bag under the condition of high flow rate and high pressure. The accuracy of the limit resistance to water pressure of the textile bag obtained from theoretical analysis is verified. The results show that the theoretical analysis is consistent with the simulation results. The textile bag can realize the fast controllable plugging of the large water passage of moving water within the limit of the antihydraulic stress.


2021 ◽  
Vol 2083 (4) ◽  
pp. 042091
Author(s):  
Wei Zhang ◽  
Peigang Jiao ◽  
Qinzhong Hou

Abstract The method based on Smooth Particle Hydrodynamics (SPH) is a meshless method which is widely used at present. Its advantage is that it can effectively improve the mesh distortion when finite element is used to deal with large deformation, and its particle characteristics are suitable to deal with the simulation problem of fluid. Based on the actual vehicle wading test site and the actual parameters of the vehicle, combined with the actual situation and theoretical basis, the SPH method is used for numerical simulation analysis of the vehicle wading problem. By comparing the simulation process with the actual water changes during wading, the feasibility of using SPH method in vehicle wading application is proved. In the simulation process of vehicle wading driving, under the condition of constant water level, by setting different wading speeds of vehicle, the flow law and change mechanism of water free surface are analyzed, which are of great significance in theoretical research and engineering application research.


2021 ◽  
Author(s):  
Yi Guixiang ◽  
Li Liang

Abstract Cracks were found in the slab of a nuclear power plant when the formwork was removed. By means of ultrasonic testing, water storage test and crack width detection, the fracture distribution, depth and width characteristics are determined. On this basis, the numerical simulation analysis of hydration heat in the maintenance process is carried out to simulate the possible crack generation and distribution of the floor slab in the maintenance process. The simulation result shows that cracks under the combined action of temperature and shrinkage are consistent with the cracking characteristics of floor slab. Through numerical simulation of the cracked floor and intact floor, the change of the out of plane bearing capacity (bending and shear) of the cracked floor is compared and analyzed. In the model, considering the reduction of the bearing capacity at the crack section and the change of load transfer effect at the crack interface, the concrete model is disconnected according to the known opening situation, and the contact relationship is set on the crack interface to simulate the crack. Through comparative analysis, the mechanical properties of the cracked floor are evaluated, and the refined numerical simulation method of the working components with cracks is proposed. This paper can provide guidance for the cause analysis and influence evaluation of similar thick plate cracking phenomenon.


2013 ◽  
Vol 353-356 ◽  
pp. 312-317
Author(s):  
Ying Yong Li ◽  
Li Zhi Zheng ◽  
Hong Bo Zhang ◽  
Xiu Guang Song ◽  
Zhi Chao Xue

In order to ensure the security of gravity retaining wall in the high fill subgrade, the design of gravity retaining wall with anchors is proposed,the characteristic of the new wall is that comment anchors are added to the traditional gravity retaining wall,by friction anchors provide lateral pull to the wall so the stability of the new wall is improved. Because of the constraints of anchors, the lateral free deformation is influenced and the soil pressure distribution is very complicated, field tests showed that soil pressure distribution is nonlinear and pressure concentrate in anchoring position. In order to reveal the supporting mechanism of retaining wall and propose the soil pressure formula, the model test of anchor retaining wall is made and numerical simulation is done. The results show that soil pressure appears incresent above the anchor and decreasing below the anchor, the soil pressre also grew larger away from the anchor proximal in the horizontal direction.


2013 ◽  
Vol 470 ◽  
pp. 205-210
Author(s):  
Hao Tang ◽  
Zi Guang He ◽  
Hai Bo Lian

The analysis model of coal pillar of a empty mine goaf in north of Shanxi province was constructed and the process of coal pillar from formation to weathering was simulated through the application of software of FLAC3D in this article. The stressstrain and the law of plasticity transformation of coal pillar from formation to weathering were analyzed and the long-term stability of coal pillar was forecasted. The result showed that the stability of coal pillar was bad for excessive excavated and weathering and the coal pillar will be broken easier for pressure and shear.


2011 ◽  
Vol 7 (2) ◽  
pp. 40
Author(s):  
Helmy Darjanto

The numerical simulation of raft-pile foundations subjected to vertical load is presented in this paper. For comparison study, numerical models of single raft and pile groups are completed. The numerical models are adopting the elastic constitutive law for the materials. The stresses and vertical displacement of the models are observed. The behaviour of the raft-pile foundation compared to the pile-group is then investigated. The results using the same external load show that the raft-pile foundation has smallest displacement compared to the others. In terms of stresses, the raft shows contribution of the load transfer to the underneath soil as well as the piles. Moreover, the behaviour of the raft-pile system appears to be a combination of the pile-group and the single raft. In order to estimate the bearing capacity of the raft-pile system, it is suggested that the contribution of the raft should be included in addition of the piles’. Keywords: raft-pile foundation, soil-structure interaction, floating foundation


2010 ◽  
Vol 163-167 ◽  
pp. 3739-3744
Author(s):  
Jian Chun Mu ◽  
Hui Feng Xi ◽  
Yong He Wu ◽  
Sheng Qiang Li ◽  
Guo Hui Yang

The paper proposed a new reinforcement technique-planting steel technique. By numerical simulation analysis of planting steel, the load – slip curve, the load – stress curve and others were obtained. Meanwhile, ultimate bearing capacity of angle was calculated, and the ultimate bearing capacities with the same model at different anchorage depths were compared. With the anchorage depth increased, the ultimate bearing capacity increased too. But while the anchorage depth increased to a certain value, the ultimate bearing capacity no longer increased. All these provided a theoretical basis for the engineering application of planting steel technique.


2014 ◽  
Vol 670-671 ◽  
pp. 1079-1082
Author(s):  
He Bing

Xinchang tailings dam is used as an object and the software named Slide is utilized to operate numerical simulation, and then the three conditions (normal operating mode, flood conditions, the special conditions) of tailings dam are analyzed to determine the stability. The conclusions are as follows: tailings dam have been built to 80m height, both to meet regulatory requirements, so the dam is stable; but if continue to increase the height to 85m, tailings dam stability coefficient reduced to special conditions 1.032, less than the standard value 1.05, does not meet the national regulatory requirements, the maximum limit of a height of about 80m.


2012 ◽  
Vol 619 ◽  
pp. 231-238
Author(s):  
Mei Chang Zhang ◽  
Peng Cheng Fei ◽  
De Long Zou

The bolt support is important to ensure the stability of surrounding rock. Of Nan Yangpo mines as the research background. The application of numerical simulation software FLAC3D mine deep Bolt bolt support after the surrounding rock deformation law of the numerical simulation, Comparison and analysis of rock displacement and plastic zone under the support program changes. The results show that, The third bolt support nursing program, Significantly improve the strength and load carrying capacity of the surrounding rock, Effectively control the damage of the deep tunnel deformation that can control the roof of 4101 the return airway and two to help the stability.


Sign in / Sign up

Export Citation Format

Share Document