scholarly journals Highly Effective Degradation of Nitrophenols by Biometal Nanoparticles Synthesized using Caulis Spatholobi Extract

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Van Thuan Le ◽  
Van-Cuong Nguyen ◽  
Xuan-Thang Cao ◽  
Tan Phat Chau ◽  
Thi Dung Nguyen ◽  
...  

The green biosynthesis of metal nanoparticles (MNPs) has been proved to have many advantages over other methods due to its simplicity, large-scale production, ecofriendly approach, and high catalytic efficiency. This work describes a single-step technique for green synthesis of colloidal silver (AgNPs) and gold nanoparticles (AuNPs) using the extract from Caulis Spatholobi stems. Ultraviolet-visible spectroscopy measurements were used to optimize the main synthesis factors, including metal ion concentration, reaction time, and reaction temperature via surface plasmon resonance phenomenon. Fourier-transform infrared spectroscopy showed the possible functional groups responsible for reducing and stabilizing the synthesized MNPs. The powder X-ray diffraction and selected area electron diffraction analysis confirmed the crystalline nature of the biosynthesized MNPs. High-resolution transmission electron microscopy revealed the spherical shape of MNPs with an average size of 10-20 nm. The obtained MNPs also exhibited the enhanced catalytic activity in the reduction of 2-nitrophenol and 3-nitrophenol.

Author(s):  
Vikas Sharma ◽  
Chandana Majee ◽  
Rahul Kaushik ◽  
Shivani Saxena ◽  
Salahuddin Salahuddin ◽  
...  

Herbal digestive tablets are meant for treating indigestion problems. The indigestion problem is one of the major problems of all (the) ages of human beings. As trends for eating fast foods is increasing, simultaneously the improper digestion also tends to increase. There are a number of digestive tablets in the market but in attempt to improve their taste the actual motto behind their use is masked. To combat the indigestion problems, in the present study an attempt has been made to formulate, develop and evaluate herbal digestive tablets. The formula of the digestive tablet has been decided after deep review of Ayurvedic formulary of India. The ingredients of this formulation have been procured from authentic sources. The wet granulation method was used to prepare the granules for punching the tablets. After preparation, the herbal digestive tablets were subjected to various pharmaceutical evaluations and quality control evaluations as per the guidelines from World Health Organization (WHO). The formulation was also subjected to antioxidant screening using Phosphomolybdenum method. The digestive tablets are obtained as light brown-colored round tablets with pleasant odour and spicy taste with an average size of 8mm and smooth edges. Maximum extractive value was observed as 34% in methanol with a total ash value of 10.16%. Other parameters reported as bitterness value- 0.69 units, volatile oil content-8%, loss on drying- 12.3%, swelling and foaming index of 0.27 and less than 100 respectively. The tablets showed a total antioxidant potential of 0.51mg/mg as Ascorbic acid equivalent. Tablets also pass various pharmaceutical evaluation parameters like hardness, friability, weight variation, and disintegration test. Herbal digestive tablets have very excellent taste due to less bitter drugs. The tablet formula can be applied to prepare large scale production of digestive tablets.


2020 ◽  
Vol 11 ◽  
pp. 432-442 ◽  
Author(s):  
Munaiah Yeddala ◽  
Pallavi Thakur ◽  
Anugraha A ◽  
Tharangattu N Narayanan

On-site peroxide generation via electrochemical reduction is gaining tremendous attention due to its importance in many fields, including water treatment technologies. Oxidized graphitic carbon-based materials have been recently proposed as an alternative to metal-based catalysts in the electrochemical oxygen reduction reaction (ORR), and in this work we unravel the role of C=O groups in graphene towards sustainable peroxide formation. We demonstrate a versatile single-step electrochemical exfoliation of graphite to graphene with a controllable degree of oxygen functionalities and thickness, leading to the formation of large quantities of functionalized graphene with tunable rate parameters, such as the rate constant and exchange current density. Higher oxygen-containing exfoliated graphene is known to undergo a two-electron reduction path in ORR having an efficiency of about 80 ± 2% even at high overpotential. Bulk production of H2O2 via electrolysis was also demonstrated at low potential (0.358 mV vs RHE), yielding ≈34 mg/L peroxide with highly functionalized (≈23 atom %) graphene and ≈16 g/L with low functionalized (≈13 atom %) graphene, which is on par with the peroxide production using state-of-the-art precious-metal-based catalysts. Hence this method opens a new scheme for the single-step large-scale production of functionalized carbon-based catalysts (yield ≈45% by weight) that have varying functionalities and can deliver peroxide via the electrochemical ORR process.


2014 ◽  
Vol 80 (13) ◽  
pp. 4003-4011 ◽  
Author(s):  
Colin J. Jackson ◽  
Christopher W. Coppin ◽  
Paul D. Carr ◽  
Alexey Aleksandrov ◽  
Matthew Wilding ◽  
...  

ABSTRACTMicrobial metalloenzymes constitute a large library of biocatalysts, a number of which have already been shown to catalyze the breakdown of toxic chemicals or industrially relevant chemical transformations. However, while there is considerable interest in harnessing these catalysts for biotechnology, for many of the enzymes, their large-scale production in active, soluble form in recombinant systems is a significant barrier to their use. In this work, we demonstrate that as few as three mutations can result in a 300-fold increase in the expression of soluble TrzN, an enzyme fromArthrobacter aurescenswith environmental applications that catalyzes the hydrolysis of triazine herbicides, inEscherichia coli. Using a combination of X-ray crystallography, kinetic analysis, and computational simulation, we show that the majority of the improvement in expression is due to stabilization of the apoenzyme rather than the metal ion-bound holoenzyme. This provides a structural and mechanistic explanation for the observation that many compensatory mutations can increase levels of soluble-protein production without increasing the stability of the final, active form of the enzyme. This study provides a molecular understanding of the importance of the stability of metal ion free states to the accumulation of soluble protein and shows that differences between apoenzyme and holoenzyme structures can result in mutations affecting the stability of either state differently.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Mai Abdeen ◽  
Soraya Sabry ◽  
Hanan Ghozlan ◽  
Ahmed A. El-Gendy ◽  
Everett E. Carpenter

Magnetic Fe and Fe3O4 (magnetite) nanoparticles are successfully synthesized using Aspergillus niger YESM 1 and supercritical condition of liquids. Aspergillus niger is used for decomposition of FeSO4 and FeCl3 to FeS and Fe2O3, respectively. The produced particles are exposed to supercritical condition of ethanol for 1 hour at 300°C and pressure of 850 psi. The phase structure and the morphology measurements yield pure iron and major Fe3O4 spherical nanoparticles with average size of 18 and 50 nm, respectively. The crystal size amounts to 9 nm for Fe and 8 nm for Fe3O4. The magnetic properties are measured to exhibit superparamagnetic- and ferromagnetic-like behaviors for Fe and Fe3O4 nanoparticles, respectively. The saturation magnetization amounts to 112 and 68 emu/g for Fe and Fe3O4, respectively. The obtained results open new route for using the biophysical method for large-scale production of highly magnetic nanoparticles to be used for biomedical applications.


2021 ◽  
Vol 8 (3) ◽  
pp. 20210304
Author(s):  
Semyon Bachinin ◽  
Venera Gilemkhanova ◽  
Maria Timofeeva ◽  
Yuliya Kenzhebayeva ◽  
Andrei Yankin ◽  
...  

Metal-organic frameworks (MOFs), being a family of highly crystalline and porous materials, have attracted particular attention in material science due to their unprecedented chemical and structural tunability. Next to their application in gas adsorption, separation, and storage, MOFs also can be utilized for energy transfer and storage in batteries and supercapacitors. Based on recent studies, this review describes the latest developments about MOFs as structural elements of metal-ion battery with a focus on their industry-oriented and large-scale production.


2014 ◽  
Vol 07 (06) ◽  
pp. 1440008 ◽  
Author(s):  
Linlin Wang ◽  
Kaibin Tang ◽  
Min Zhang ◽  
Xiaozhu Zhang ◽  
Jingli Xu

Particle size effects on the electrochemical performance of the CuO particles toward lithium are essential. In this work, a low-cost, large-scale production but simple approach has been developed to fabricate CuO nanoparticles with an average size in ~ 130 nm through thermolysis of Cu ( OH )2 precursors. As anode materials for lithium ion batteries (LIBs), the CuO nanoparticles deliver a high reversible capacity of 540 mAh g-1 over 100 cycles at 0.5 C. It also exhibits a rate capacity of 405 mAh g-1 at 2 C. These results suggest that the facile synthetic method of producing the CuO nanoparticles can enhance cycle performance, superior to that of some different sizes of the CuO nanoparticles and many reported CuO -based anodes.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Cong Liu ◽  
Di Sun ◽  
Jiawen Liu ◽  
Jingrong Zhu ◽  
Weijie Liu

AbstractMicrobial flocculants are macromolecular substances produced by microorganisms. Due to its non-toxic, harmless, and biodegradable advantages, microbial flocculants have been widely used in various industrial fields, such as wastewater treatment, microalgae harvest, activated sludge dewatering, heavy metal ion adsorption, and nanoparticle synthesis, especially in the post-treatment process of fermentation with high safety requirement. However, compared with the traditional inorganic flocculants and organic polymeric flocculants, the high production cost is the main bottleneck that restricts the large-scale production and application of microbial flocculants. To reduce the production cost of microbial flocculant, a series of efforts have been carried out and some exciting research progresses have been achieved. This paper summarized the research advances in the last decade, including the screening of high-yield strains and the construction of genetically engineered strains, search of cheap alternative medium, the extraction and preservation methods, microbial flocculants production as an incidental product of other biological processes, combined use of traditional flocculant and microbial flocculant, and the production of microbial flocculant promoted by inducer. Moreover, this paper prospects the future research directions to further reduce the production cost of microbial flocculants, thereby promoting the industrial production and large-scale application of microbial flocculants.


Author(s):  
Neupane Dipesh

CdSe semiconducting Quantum dots were prepared by a chemical method at a room temperature. X-ray powder diffraction and transmission electron microscope measurements conformed a hexagonal cubic crystalline phase of Cdse semiconducting Quantum dots of about 15 nm average size with nearly spherical shape. The absorption and photoluminescence spectra of the CdSe quantum dots were strongly shown blue shifted due to size quantization. The present study describes a simultaneous and highly reproducible large scale synthesis of highly luminescent CdSe Quantum dots. Kathmandu University Journal of Science, Engineering and Technology Vol. 8, No. II, December, 2012, 83-88 DOI: http://dx.doi.org/10.3126/kuset.v8i2.7329


2007 ◽  
Vol 124-126 ◽  
pp. 1189-1192 ◽  
Author(s):  
Kwi Jong Lee ◽  
Young Il Lee ◽  
In Keun Shim ◽  
Byung Ho Jun ◽  
Hye Jin Cho ◽  
...  

The synthesis and characterization of polymer-stabilized silver nanoparticles (Ag NPs) for water-based silver inks are studied. In order to synthesize Ag NPs with spherical shape, the conventional polyol processes require an excess of poly(vinyl pyrrolidone) (PVP) (10 ~ 1000 times than AgNO3) and therefore result in low productivity per reactor volume. In this study, poly(acrylic acid) (PAA) with carboxylic acid group was used instead of PVP. Even at less molar ratio of PAA to AgNO3 (< 2), the spherical Ag NPs with average size of 30 nm were successfully synthesized at 100 gram-scale with high reaction yield of 90%. Furthermore, the Ag NPs were dispersed into alcohol-based solvent and then patterned into metallic lines through inkjet printing technology.


1998 ◽  
Vol 330 (3) ◽  
pp. 1201-1208 ◽  
Author(s):  
Peter M. A. M. VISSERS ◽  
Petra H. M. BOVEE-GEURTS ◽  
M. Daniël PORTIER ◽  
Corné H. W. KLAASSEN ◽  
Willem J. DEGRIP

We present the first characterization of the late photo-intermediates (Meta I, Meta II and Meta III) of a vertebrate cone pigment in a lipid environment. Marked differences from the same pathway in the rod pigment were observed. The histidine-tagged human green cone pigment was functionally expressed in large-scale suspension cultures in Sf9 insect cells using recombinant baculovirus. The recombinant pigment was extensively purified in a single step by immobilized metal affinity chromatography and displays the expected spectral characteristics. The purified pigment was able to activate the rod G-protein transducin at about half the rate of the rod pigment. Following reconstitution into bovine retina lipid proteoliposomes, identification and analysis of the photo-intermediates Meta I, Meta II and Meta III was accomplished. Similar to the rod pigment, our results indicate the existence of a Meta I-Meta II equilibrium, but we find no evidence for pH dependence. Replacement of native Cl- by NO3- in the anion-binding site of the cone pigment affected the spectral position of the pigment itself and of the Meta I intermediate, but not that of Meta II and Meta III. The decay rate of the ‘active’ intermediate Meta II did not differ for the Cl- and NO3- state. However, in qualitative agreement with results reported before for chicken cone pigments, the rate of Meta II decay was significantly higher in the human cone pigment than in the rod pigment.


Sign in / Sign up

Export Citation Format

Share Document