scholarly journals Microbial-Physical Synthesis of Fe and Fe3O4 Magnetic Nanoparticles Using Aspergillus niger YESM1 and Supercritical Condition of Ethanol

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Mai Abdeen ◽  
Soraya Sabry ◽  
Hanan Ghozlan ◽  
Ahmed A. El-Gendy ◽  
Everett E. Carpenter

Magnetic Fe and Fe3O4 (magnetite) nanoparticles are successfully synthesized using Aspergillus niger YESM 1 and supercritical condition of liquids. Aspergillus niger is used for decomposition of FeSO4 and FeCl3 to FeS and Fe2O3, respectively. The produced particles are exposed to supercritical condition of ethanol for 1 hour at 300°C and pressure of 850 psi. The phase structure and the morphology measurements yield pure iron and major Fe3O4 spherical nanoparticles with average size of 18 and 50 nm, respectively. The crystal size amounts to 9 nm for Fe and 8 nm for Fe3O4. The magnetic properties are measured to exhibit superparamagnetic- and ferromagnetic-like behaviors for Fe and Fe3O4 nanoparticles, respectively. The saturation magnetization amounts to 112 and 68 emu/g for Fe and Fe3O4, respectively. The obtained results open new route for using the biophysical method for large-scale production of highly magnetic nanoparticles to be used for biomedical applications.

Marine Drugs ◽  
2021 ◽  
Vol 19 (5) ◽  
pp. 241
Author(s):  
Shaden A. M. Khalifa ◽  
Eslam S. Shedid ◽  
Essa M. Saied ◽  
Amir Reza Jassbi ◽  
Fatemeh H. Jamebozorgi ◽  
...  

Cyanobacteria are photosynthetic prokaryotic organisms which represent a significant source of novel, bioactive, secondary metabolites, and they are also considered an abundant source of bioactive compounds/drugs, such as dolastatin, cryptophycin 1, curacin toyocamycin, phytoalexin, cyanovirin-N and phycocyanin. Some of these compounds have displayed promising results in successful Phase I, II, III and IV clinical trials. Additionally, the cyanobacterial compounds applied to medical research have demonstrated an exciting future with great potential to be developed into new medicines. Most of these compounds have exhibited strong pharmacological activities, including neurotoxicity, cytotoxicity and antiviral activity against HCMV, HSV-1, HHV-6 and HIV-1, so these metabolites could be promising candidates for COVID-19 treatment. Therefore, the effective large-scale production of natural marine products through synthesis is important for resolving the existing issues associated with chemical isolation, including small yields, and may be necessary to better investigate their biological activities. Herein, we highlight the total synthesized and stereochemical determinations of the cyanobacterial bioactive compounds. Furthermore, this review primarily focuses on the biotechnological applications of cyanobacteria, including applications as cosmetics, food supplements, and the nanobiotechnological applications of cyanobacterial bioactive compounds in potential medicinal applications for various human diseases are discussed.


2019 ◽  
Vol 7 (10) ◽  
pp. 387 ◽  
Author(s):  
Monica Salamone ◽  
Aldo Nicosia ◽  
Giulio Ghersi ◽  
Marcello Tagliavia

Proteolytic enzymes are of great interest for biotechnological purposes, and their large-scale production, as well as the discovery of strains producing new molecules, is a relevant issue. Collagenases are employed for biomedical and pharmaceutical purposes. The high specificity of collagenase-based preparations toward the substrate strongly relies on the enzyme purity. However, the overall activity may depend on the cooperation with other proteases, the presence of which may be essential for the overall enzymatic activity, but potentially harmful for cells and tissues. Vibrios produce some of the most promising bacterial proteases (including collagenases), and their exo-proteome includes several enzymes with different substrate specificities, the production and relative abundances of which strongly depend on growth conditions. We evaluated the effects of different media compositions on the proteolytic exo-proteome of Vibrio alginolyticus and its closely relative Vibrio parahaemolyticus, in order to improve the overall proteases production, as well as the yield of the desired enzymes subset. Substantial biological responses were achieved with all media, which allowed defining culture conditions for targeted improvement of selected enzyme classes, besides giving insights in possible regulatory mechanisms. In particular, we focused our efforts on collagenases production, because of the growing biotechnological interest due to their pharmaceutical/biomedical applications.


2014 ◽  
Vol 07 (06) ◽  
pp. 1440008 ◽  
Author(s):  
Linlin Wang ◽  
Kaibin Tang ◽  
Min Zhang ◽  
Xiaozhu Zhang ◽  
Jingli Xu

Particle size effects on the electrochemical performance of the CuO particles toward lithium are essential. In this work, a low-cost, large-scale production but simple approach has been developed to fabricate CuO nanoparticles with an average size in ~ 130 nm through thermolysis of Cu ( OH )2 precursors. As anode materials for lithium ion batteries (LIBs), the CuO nanoparticles deliver a high reversible capacity of 540 mAh g-1 over 100 cycles at 0.5 C. It also exhibits a rate capacity of 405 mAh g-1 at 2 C. These results suggest that the facile synthetic method of producing the CuO nanoparticles can enhance cycle performance, superior to that of some different sizes of the CuO nanoparticles and many reported CuO -based anodes.


Amylase ◽  
2017 ◽  
Vol 1 (1) ◽  
Author(s):  
Gregory L. Côté ◽  
Christopher A. Dunlap ◽  
Karl E. Vermillion ◽  
Christopher D. Skory

AbstractCertain lactic acid bacteria produce glycosyltransferases known as glucansucrases, which synthesize α-D-glucans via glucosyl transfer from sucrose. We recently reported on the formation of the unusual trisaccharide isomelezitose in low yields by a variety of glucansucrases. Isomelezitose is a rare non-reducing trisaccharide, with the structure α-d-glucopyranosyl- (1→6)-β-d-fructofuranosyl-(2↔1)-α-d-glucopyranoside. In this work, we describe the synthesis of isomelezitose in high yields by variants of glucansucrases engineered to contain a single point mutation at a key leucine residue involved in acceptor substrate binding. Some variants produce isomelezitose in yields up to 57%. This method is amenable to large-scale production of isomelezitose for food, industrial and biomedical applications.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Leticia Miranda Cesário ◽  
Giovanna Pinto Pires ◽  
Rafael Freitas Santos Pereira ◽  
Elisabete Fantuzzi ◽  
André da Silva Xavier ◽  
...  

Abstract Lipases are triacylglycerol hydrolases that catalyze hydrolysis, esterification, interesterification, and transesterification reactions. These enzymes are targets of several industrial and biotech applications, such as catalysts, detergent production, food, biofuels, wastewater treatment, and others. Microbial enzymes are preferable for large scale production due to ease of production and extraction. Several studies have reported that lipases from filamentous fungi are predominantly extracellular and highly active. However, there are many factors that interfere with enzyme production (pH, temperature, medium composition, agitation, aeration, inducer type, and concentration, etc.), making control difficult and burdening the process. This work aimed to optimize the lipase production of four fungal isolates from oily residues (Penicillium sp., Aspergillus niger, Aspergillus sp., and Aspergillus sp.). The lipase-producing fungi isolates were morphologically characterized by optical and scanning electron microscopy. The optimal lipase production time curve was previously determined, and the response variable used was the amount of total protein in the medium after cultivation by submerged fermentation. A complete factorial design 32 was performed, evaluating the temperatures (28 °C, 32 °C, and 36 °C) and soybean oil inducer concentration (2%, 6%, and 10%). Each lipase-producing isolate reacted differently to the conditions tested, the Aspergillus sp. F18 reached maximum lipase production, compared to others, under conditions of 32 °C and 2% of oil with a yield of 11,007 (µg mL−1). Penicillium sp. F04 achieved better results at 36 °C and 6% oil, although for Aspergillus niger F16 was at 36 °C and 10% oil and Aspergillus sp. F21 at 32 °C and 2% oil. These results show that microorganisms isolated from oily residues derived from environmental sanitation can be a promising alternative for the large-scale production of lipases. Graphical Abstract


2021 ◽  
Vol 28 ◽  
Author(s):  
Le Minh Tu Phan

: Carbon dots (CDs), an emerging nanoagent providing an alternative to conventional fluorescent agents, are sparking the scientist’s interest in biomedical applications owing to their unique advantages, including ease of synthesis, large scale production, low cost, prominent photoluminescence, good photostability, easy functionalization, sufficient biocompatibility, good nanocarrier, and excellent ability to generate reactive oxygen species or heat. Herein, this perspective provides a viewpoint about imaging-assisted biomedical applications using fluorescent CDs regarding in vitro and in vivo bioimaging, imaging-assisted sensing, and imaging-guided therapy. The opinions about their potential and challenges in applicable biomedical applications are discussed to develop, further ameliorated CDs for their intense exploitation in diverse imaging-assisted biomedical applications.


Nanomedicine ◽  
2020 ◽  
Vol 15 (13) ◽  
pp. 1331-1340 ◽  
Author(s):  
Morgan Chandler ◽  
Martin Panigaj ◽  
Lewis A Rolband ◽  
Kirill A Afonin

Nucleic acids have been utilized to construct an expansive collection of nanoarchitectures varying in design, physicochemical properties, cellular processing and biomedical applications. However, the broader therapeutic adaptation of nucleic acid nanoassemblies in general, and RNA-based nanoparticles in particular, have faced several challenges in moving towards (pre)clinical settings. For one, the large-batch synthesis of nucleic acids is still under development, with multi-stranded and chemically modified assemblies requiring greater production capacity while maintaining consistent medical-grade outputs. Furthermore, the unknown immunostimulation by these nanomaterials poses additional challenges, necessary to be overcome for optimizing future development of clinically approved RNA nanoparticles.


2010 ◽  
Vol 37 (10) ◽  
pp. 1023-1031 ◽  
Author(s):  
Ji-Won Moon ◽  
Claudia J. Rawn ◽  
Adam J. Rondinone ◽  
Lonnie J. Love ◽  
Yul Roh ◽  
...  

1993 ◽  
Vol 32 (1) ◽  
pp. 129-131
Author(s):  
Naureen Talha

The literature on female labour in Third World countries has become quite extensive. India, being comparatively more advanced industrially, and in view of its size and population, presents a pictures of multiplicity of problems which face the female labour market. However, the author has also included Mexico in this analytical study. It is interesting to see the characteristics of developing industrialisation in two different societies: the Indian society, which is conservative, and the Mexican society, which is progressive. In the first chapter of the book, the author explains that he is not concerned with the process of industrialisation and female labour employed at different levels of work, but that he is interested in forms of production and women's employment in large-scale production, petty commodity production, marginal small production, and self-employment in the informal sector. It is only by analysis of these forms that the picture of females having a lower status is understood in its social and political setting.


Sign in / Sign up

Export Citation Format

Share Document