scholarly journals From Topology Optimization to Complex Digital Architecture: A New Methodology for Architectural Morphology Generation

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Kangqiang Lin ◽  
Yongpeng He ◽  
Yang Yang ◽  
Lei Xiong

Owing to the capacities of generating structural configuration with both reasonable mechanical properties and high material utilization, topology optimization has been widely adopted in engineering design. Although numerous architects have tried to apply topology optimization tools to assist architectural morphology design in practical projects, topology optimization, like other quantitative analysis techniques, has not been systematically incorporated into the architectural morphology design. In this study, by integrating topology optimization toolsets and parametric design theory, combined with multiattribute decision-making analysis, a design method is proposed that could efficiently obtain several architectural structural architectural morphologies with both structural rationality and aesthetic rules and complete the evaluation and performance ranking of alternatives. In this study, the essential architectural application scenarios are divided into surface application scenarios and volumetric application scenarios, and the possible variation range of topology optimization parameters of architectural application scenarios is defined. By iteratively adjusting the influence parameters, diverse results of structural morphology are obtained. It is found that small changes in optimization parameters will bring great differences in topological results. Such a sensitive relationship can be utilized to generate a set of rational topological structures, and these topological results can be regarded as alternatives for architectural morphology design. For the performance evaluation and ranking analysis of alternatives, the application of FANP-TOPSIS multiattribute decision-making model is put forward in this study. The case study shows that this decision-making analysis model is efficient, convenient, and applicable in the architectural morphology design. The results of this study can provide new ideas and key references for scholars and architects in the field of architecture to explore the process and method of architectural morphology design and other related issues.

Author(s):  
Kazuko Fuchi ◽  
Philip R. Buskohl ◽  
James J. Joo ◽  
Gregory W. Reich ◽  
Richard A. Vaia

Origami structures morph between 2D and 3D conformations along predetermined fold lines that efficiently program the form of the structure and show potential for many engineering applications. However, the enormity of the design space and the complex relationship between origami-based geometries and engineering metrics place a severe limitation on design strategies based on intuition. The presented work proposes a systematic design method using topology optimization to distribute foldline properties within a reference crease pattern, adding or removing folds through optimization, for a mechanism design. Following the work of Schenk and Guest, foldable structures are modeled as pin-joint truss structures with additional constraints on fold, or dihedral, angles. The performance of a designed origami mechanism is evaluated in 3D by applying prescribed forces and finding displacements at set locations. The integration of the concept of origami in mechanism design thus allows for the description of designs in 2D and performance in 3D. Numerical examples indicate that origami mechanisms with desired deformations can be obtained using the proposed method. A constraint on the number of foldlines is used to simplify a design.


2019 ◽  
Vol 2019 ◽  
pp. 1-24 ◽  
Author(s):  
Yong Shan ◽  
Xiaoming Zhou ◽  
Xiaoming Tan ◽  
Jingzhou Zhang ◽  
Yanhua Wu

A parametric design method, which was based on super-elliptical transition and self-adaption infrared radiation shield for the double S-shaped nozzle, was introduced. The complete shielding of high-temperature components in the S-shaped nozzle was realized. Model experiments and numerical simulations were performed to investigate the effects of offset ratio S/D, the ratio of length to diameter L/D, and the aspect ratio W/H on the aerodynamics and infrared radiation. The results showed that the total pressure recovery and thrust coefficients were improved initially, but dropped rapidly with the increase in offset ratios with the range of investigated parameters. There existed an optimal offset ratio for the aerodynamic performances. Considering the weight penalty, the length of nozzles should only be increased properly to achieve better aerodynamic performances. Both friction and viscous losses caused by large streamwise vortices dominated the aerodynamic performances of nozzles. The nozzle with the aspect ratio of W/H=5.0 was recommended for achieving optimal aerodynamics. The increase in aspect and offset ratios could effectively suppress plume radiation, which was, however, not sensitive to overall radiation. Compared to circular nozzles, double S-shaped nozzles reduced overall infrared radiation by over 50%, which proves significant stealth ability. A balance between aerodynamic performances and infrared radiation suppression could be reached for double S-shaped nozzles.


2014 ◽  
Vol 950 ◽  
pp. 160-164
Author(s):  
Fan Wei Meng ◽  
Yong Biao Hu

Design methods of electric motors and reasonable parametric design principles for hybrid electric construction equipments are proposed. In accordance with the power performance, economical efficiency and electric transmission features of construction equipments, the new design method of electric motors which is an advanced application-centric design process are analyzed, and the design theory and calculation method of main parameters are discussed, so that theoretical basis is provided for the research and design of new electric drive construction equipments. Parametric design of a typical dozer drive train is conducted applied the proposed new design method and calculation method. Major components of the power train are modeled using the simulation software Simulink. Based on power track control strategy, the simulation results show that the proposed new design method and parameter design theory of electric motors for hybrid construction equipments are reasonable. It has significance in both theory and practice for the research and development of hybrid electric drive construction equipments.


2013 ◽  
Vol 834-836 ◽  
pp. 1432-1435
Author(s):  
Yu Yang

Traditional agricultural machinery design methods usually go through longer-design cycle and can hardly make good use of existing knowledge and experience. In view of this problem, parametric design theory and knowledge-based engineering were applied to the disc-scoop-type metering device designed to improve the design experience and reuse design knowledge. Through the knowledge-based parametric design method, the design framework model of disc-scoop-type metering device was put forward. The knowledge library on the basis of design rules and characteristic similarity-based case library were created, and disc-scoop-type metering device parametric design system based on knowledge had been developed on the platform of Pro/Engineering. The rapid design for knowledge-driven model of disc-scoop-type metering device was realized. The specific design examples clearly indicated that the establishment of the system considerately improved the quality and efficiency of the design.


2011 ◽  
Vol 80-81 ◽  
pp. 1016-1020 ◽  
Author(s):  
Wei Huang ◽  
Chang Song Ou ◽  
Hai Man Lu ◽  
Zheng Liang Xie

According to the limit working conditions of the gantry milling machine column, this paper adopts Parametric Design Language APDL to set up finite element model and make finite element analysis. Based on the analysis, the topology optimization method of column structure is proposed, and the optimal design method is established to minimize the weight. The finite element analysis is made again to analyze the rearranged column structure. Compared with the design made through experience, optimally designed column can reduce 10% weight. And the critical displacement and maximum stress are not affected.


2013 ◽  
Vol 411-414 ◽  
pp. 2997-3005
Author(s):  
Min Huang ◽  
You Long Wang ◽  
Shi Feng Xiong ◽  
Yao Kang

Based on several structure optimization parameters for the description of the geometric features of a double oblique radial swirler, simplified structure design parameters and value interval were determined. And, the CFD analysis model of the swirler is established. Based on the approaches of multi-wheel space filling experimental designs, 17 design schemes were gained, then CFD numberical experiments on the cold single-phase flow field was developed to all design schemes. Finally, the optimal design scheme were found by numberical space filling experimental design method in a several turn.


Sign in / Sign up

Export Citation Format

Share Document