scholarly journals Microbiota, Bacterial Carbonic Anhydrases, and Modulators of Their Activity: Links to Human Diseases?

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Amedeo Amedei ◽  
Clemente Capasso ◽  
Giulia Nannini ◽  
Claudiu T. Supuran

The involvement of the human microbiome is crucial for different host functions such as protection, metabolism, reproduction, and especially immunity. However, both endogenous and exogenous factors can affect the balance of the microbiota, creating a state of dysbiosis, which can start various gastrointestinal or systemic diseases. The challenge of future medicine is to remodel the intestinal microbiota to bring it back to healthy equilibrium (eubiosis) and, thus, counteract its negative role in the diseases’ onset. The shaping of the microbiota is currently practiced in different ways ranging from diet (or use of prebiotics, probiotics, and synbiotics) to phage therapy and antibiotics, including microbiota fecal transplantation. Furthermore, because microbiota modulation is a capillary process, and because many microbiota bacteria (both beneficial and pathogenic) have carbonic anhydrases (specifically the four classes α, β, γ, and ι), we believe that the use of CA inhibitors and activators can open up new therapeutic strategies for many diseases associated with microbial dysbiosis, such as the various gastrointestinal disorders and the same colorectal cancer.

Reproduction ◽  
2021 ◽  
Vol 162 (6) ◽  
pp. R85-R98
Author(s):  
Sophia Han ◽  
Charlotte C Ellberg ◽  
Isoken N Olomu ◽  
Arpita K Vyas

A growing body of research suggests that alterations to the human microbiome are associated with disease states, including obesity and diabetes. During pregnancy, these disease states are associated with maternal microbial dysbiosis. This review discusses the current literature regarding the typical maternal and offspring microbiome as well as alterations to the microbiome in the context of obesity, type 2 diabetes mellitus, and gestational diabetes mellitus. Furthermore, this review outlines the proposed mechanisms linking associations between the maternal microbiome in the aforementioned disease states and offspring microbiome. Additionally, this review highlights associations between alterations in offspring microbiome and postnatal health outcomes.


Author(s):  
Antonella Gagliardi ◽  
Valentina Totino ◽  
Fatima Cacciotti ◽  
Valerio Iebba ◽  
Bruna Neroni ◽  
...  

A microbial ecosystem in which bacteria no longer live in a mutualistic association is called dysbiotic. Gut microbiota dysbiosis is a condition related with the pathogenesis of intestinal illnesses (irritable bowel syndrome, celiac disease, and inflammatory bowel disease) and extra-intestinal illnesses (obesity, metabolic disorder, cardiovascular syndrome, allergy, and asthma). Dysbiosis status has been related to various important pathologies, and many therapeutic strategies aimed at restoring the balance of the intestinal ecosystem have been implemented. These strategies include the administration of probiotics, prebiotics, and synbiotics; phage therapy; fecal transplantation; bacterial consortium transplantation; and a still poorly investigated approach based on predatory bacteria. This review discusses the various aspects of these strategies to counteract intestinal dysbiosis.


Antibiotics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 578
Author(s):  
Cristina Prudêncio ◽  
Mónica Vieira ◽  
Seppe Van der Auweraer ◽  
Ricardo Ferraz

Antibiotics are considered one of the great “miracles” of the 20th century. Now in the 21st century in the post-antibiotic era, the miracle is turning into a nightmare, due to the growing problem of the resistance of microorganisms to classic antimicrobials and the non-investment by the pharmaceutical industry in new antimicrobial agents. Unfortunately, the current COVID-19 pandemic has demonstrated the global risks associated with uncontrolled infections and the various forms of impact that such a pandemic may have on the economy and on social habits besides the associated morbidity and mortality. Therefore, there is an urgent need to recycle classic antibiotics, as is the case in the use of ionic liquids (ILs) based on antibiotics. Thus, the aim of the present review is to summarize the data on ILs, mainly those with antimicrobial action and especially against resistant strains. The main conclusions of this article are that ILs are flexible due to their ability to modulate cations and anions as a salt, making it possible to combine the properties of both and multiplying the activity of separate cations and anions. Also, these compounds have low cost methods of production, which makes it highly attractive to explore them, especially as antimicrobial agents and against resistant strains. ILs may further be combined with other therapeutic strategies, such as phage or lysine therapy, enhancing the therapeutic arsenal needed to fight this worldwide problem of antibacterial resistance. Thus, the use of ILs as antibiotics by themselves or together with phage therapy and lysine therapy are promising alternatives against pathogenic microorganisms, and may have the possibility to be used in new ways in order to restrain uncontrolled infections.


2019 ◽  
Author(s):  
Melissa Ellermann ◽  
Raad Z Gharaibeh ◽  
Laura Fulbright ◽  
Belgin Dogan ◽  
Lyndsey N Moore ◽  
...  

AbstractFibrosis is a significant complication of intestinal disorders associated with microbial dysbiosis and pathobiont expansion, notably Crohn’s disease (CD). Mechanisms that favor fibrosis are not well understood and therapeutic strategies are limited. Here we demonstrate that colitis susceptible Il10-deficient mice develop inflammation-associated fibrosis when mono-associated with adherent/invasive Escherichia coli (AIEC) that harbor the yersiniabactin (Ybt) pathogenicity island. Inactivation of Ybt siderophore production in AIEC nearly abrogated fibrosis development in inflamed mice. In contrast, inactivation of Ybt import through its cognate receptor FyuA enhanced fibrosis severity. This corresponded with increased colonic expression of profibrogenic genes prior to the development of histological disease, therefore suggesting causality. FyuA-deficient AIEC also exhibited greater localization within sub-epithelial tissues and fibrotic lesions that was dependent on Ybt biosynthesis and corresponded with increased fibroblast activation in vitro. Together, these findings suggest that Ybt establishes a pro-fibrotic environment in the host in the absence of binding to its cognate receptor and indicates a direct link between intestinal AIEC and the induction of inflammation-associated fibrosis.


2021 ◽  
Vol 162 (19) ◽  
pp. 731-740
Author(s):  
Vilmos Fülöp ◽  
János Demeter ◽  
Áron Cseh

Összefoglaló. A humán mikrobiom az emberi szervezetben és az emberi testfelszínen élő mikrobaközösségek összessége, amelyek többsége a gyomor-bél rendszerben él. Ezek a mikrobaközösségek számos és sokféle baktériumot tartalmaznak, gombákat, vírusokat, archeákat és protozoonokat. Ez a mikrobiális közösség, vagy mikrobiota, a gazdaszervezetben nagyrészt egymással kölcsönösségi viszonyban tenyészik, és gondoskodik a bélben a tápanyagok anyagcseréjéről, kalibrálja az anyagcsere-működést, tanítja az immunrendszert, fenntartja a közösség integritását, és véd a kórokozók ellen. A majdan megszületendő magzat a megfelelő tápanyagellátását az anyai véráramból kapja, és így az anyai szervezetben a mikrobiota indukálta baktériumkomponensek vagy metabolitok hatékonyan átvihetők a magzatba. Az anyai mikrobiális közösségek – ideértve a praenatalis bélrendszeri, hüvelyi, száj- és bőrmikrobiomot – a terhesség alatt valójában kifejezett változásokon mennek keresztül, amelyek befolyásolhatják az egészség megőrzését, és hozzájárulhatnak a közismert betegségek kialakulásához. A magzat nem steril, és immunológiai szempontból sem naiv, hanem az anya révén környezeti ingerek hatásaitól befolyásolva kölcsönhatásba lép az anyai immunrendszerrel. Számos anyai tényező – beleértve a hormonokat, a citokineket és a mikrobiomot – módosíthatja az intrauterin környezetet, ezáltal befolyásolva a magzati immunrendszer fejlődését. A fokozott stresszben élő anyák csecsemőinél nagyobb az allergia és a gyomor-bél rendszeri rendellenességek aránya. A várandós étrendje is befolyásolja a magzati mikrobiomot a méh közvetítésével. A bélflóránk, vagyis a mikrobiom, a belünkben élő mikrobák összessége és szimbiózisa, amelynek kényes egyensúlya már csecsemőkorban kialakul, és döntően meghatározza az intestinalis barrier és a bélasszociált immunrendszer működését. A probiotikumok szaporodásához szükséges prebiotikummal is befolyásolható a bélflóra. A pre- és a probiotikum kombinációja a szimbiotikum. Az anyatej a patogénekkel szemben protektív hatású, részben azáltal, hogy emeli a Bifidobacterium-számot az újszülött bélflórájában. A dysbiosis a kommenzális, egészséges bélflóra megváltozása. Ennek szerepét feltételezik funkcionális gastrointestinalis kórképekben, egyre több pszichiátriai és neurológiai kórképben is, mint az autizmus-spektrumzavar. Orv Hetil. 2021; 162(19): 731–740. Summary. The human microbiome is the totality of microbe communities living in the human body and on the human body surface, most of which live in the gastrointestinal tract. These microbe communities contain many and varied bacteria, fungi, viruses, archaea and protozoa. This microbial community or microbiota in the host is largely reciprocal and takes care of nutrient metabolism in the gut, calibrates metabolism, teaches the immune system, maintains community integrity, and protects against pathogens. The fetus to be born is adequately supplied with nutrients from the maternal bloodstream, and thus microbial-induced bacterial components or metabolites can be efficiently transferred to the fetus in the maternal body. Maternal microbial communities, including prenatal intestinal, vaginal, oral, and dermal microbiomes, actually undergo pronounced changes during pregnancy that can affect health maintenance and contribute to the development of well-known diseases. The fetus is not sterile or immunologically naïve, but interacts with the maternal immune system through the effects of environmental stimuli through the mother. Many maternal factors, including hormones, cytokines, and the microbiome, can modify the intrauterine environment, thereby affecting the development of the fetal immune system. Infants of mothers under increased stress have higher rates of allergies and gastrointestinal disorders. The diet of the gravida also affects the fetal microbiome through the uterus. Our intestinal flora, or microbiome, is the totality and symbiosis of the microbes living in them, the delicate balance of which is established in infancy and decisively determines the functioning of the intestinal barrier and the intestinal associated immune system. The prebiotic required for the proliferation of probiotics can also affect the intestinal flora. The combination of pre- and probiotic is symbiotic. Breast milk has a protective effect against pathogens, in part by raising the number of Bifidobacteria in the intestinal flora of the newborn. Dysbiosis is a change in the commensal, healthy gut flora. Its role is hypothesized in functional gastrointestinal disorders, as well as in more and more psychiatric and neurological disorders such as the autism spectrum disorder. Orv Hetil. 2021; 162(19): 731–740.


2021 ◽  
Vol 12 ◽  
Author(s):  
Benchen Rao ◽  
Tong Ren ◽  
Xuemei Wang ◽  
Haiyu Wang ◽  
Yawen Zou ◽  
...  

Cholangiocarcinoma (CCA) is the most common malignant tumor of the biliary system with a very poor prognosis. The human microbiome, which is the sum of the genetic information of human microorganisms, plays an important role in regulating the digestion, absorption, immune response, and metabolism of the host. Increasing evidence indicates a close relationship between CCA and the human microbiome. Specific alterations occur in the human microbiome of patients with CCA. Therefore, in this review, we aimed to summarize the recent evidence on dysbiosis in the human microbiome of CCA. Then, we generalized the effect of Helicobacter pylori on CCA. Additionally, the potential mechanism of human microbial dysbiosis promoted the progress of CCA, and its precancerous disease was also explored. Furthermore, the possibility of the human microbiome as a diagnostic and therapeutic target of CCA was discussed.


2021 ◽  
Vol 5 (2) ◽  
pp. 27-35
Author(s):  
Kalpana Balakrishnan ◽  
Divya Sivanesan ◽  
Gaanappriya Mohan ◽  
Sachin Gunthe ◽  
Rama Verma

The human microbiome plays a crucial role in health and disease conditions. These microbiomes constitute a structured, coordinated microbial network throughout the human body. The oral cavity harbors one of the extensively diverse bacteria in the human system. Although many studies emphasize bacteriome and its interaction with the host system, very little attention is given to candidate phyla radiation (CPR), fungal components, and its interkingdom interaction in the oral microecology even with advanced techniques. The interkingdom interactions among caries causing microbes trigger the pathogenesis of bacterial diseases and cause ecological shifts and affect the host system. Studying the complex relations among the diverse oral microbiome and its host, especially CPR phyla and fungi, would give a holistic view of the caries etiology. This review provides evidence on the interkingdom interaction that establishes a complex community that could help predict future oral and systemic diseases.


Author(s):  
Natalia V Beloborodova ◽  
Andrey V. Grechko ◽  
Alexander Yu. Zurabov ◽  
Fedor M. Zurabov ◽  
Artem N. Kuzovlev ◽  
...  

The work is devoted to the organization of postcovid rehabilitation by developing a strategy of adative phage therapy, which is the production and application of a complex of bacteriophages for a specific medical institution/department based on an up-to-date collection of hospital bacterial strains isolated from the biomaterial of patients of the same institution. Bacteriophages were actively used in the world in the 20-40s of the twentieth century in various fields of medicine, but the rapid development of phage resistance in each individual case limited their use. The use of complex preparations of bacteriophages from the collection pure lines of bacteriophages of the SPC "MikroMir" a set of various phages aimed at restoring the human microbiome after a covid infection allowed to sharply reduce the number of antibiotics used in intensive care units and reduce antibiotic resistance with proven safety of phage therapy.


2019 ◽  
Vol 87 (11) ◽  
Author(s):  
Melissa Ellermann ◽  
Raad Z. Gharaibeh ◽  
Laura Fulbright ◽  
Belgin Dogan ◽  
Lyndsey N. Moore ◽  
...  

ABSTRACT Fibrosis is a significant complication of intestinal disorders associated with microbial dysbiosis and pathobiont expansion, notably Crohn’s disease (CD). Mechanisms that favor fibrosis are not well understood, and therapeutic strategies are limited. Here we demonstrate that colitis-susceptible Il10-deficient mice develop inflammation-associated fibrosis when monoassociated with adherent/invasive Escherichia coli (AIEC) that harbors the yersiniabactin (Ybt) pathogenicity island. Inactivation of Ybt siderophore production in AIEC nearly abrogated fibrosis development in inflamed mice. In contrast, inactivation of Ybt import through its cognate receptor FyuA enhanced fibrosis severity. This corresponded with increased colonic expression of profibrogenic genes prior to the development of histological disease, therefore suggesting causality. fyuA-deficient AIEC also exhibited greater localization within subepithelial tissues and fibrotic lesions that was dependent on Ybt biosynthesis and corresponded with increased fibroblast activation in vitro. Together, these findings suggest that Ybt establishes a profibrotic environment in the host in the absence of binding to its cognate receptor and indicate a direct link between intestinal AIEC and the induction of inflammation-associated fibrosis.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
George B. Saffouri ◽  
Robin R. Shields-Cutler ◽  
Jun Chen ◽  
Yi Yang ◽  
Heather R. Lekatz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document