scholarly journals Research on Local Topology Tracking of Power Grid Based on Graph Theory

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Sujing Zhou

Power network topology identification, judgment, and tracking are the basic functional components of power system guarantee system and security management system. They can provide basic network structure data for other application software programs of power system. However, the traditional power grid topology method is not easy to implement and provides less relevant data that can be accurately analyzed, so that relevant personnel cannot fully understand the state of the power grid and give accurate commands, resulting in serious power accidents. Therefore, this paper proposes the research of power grid local topology tracking based on graph theory and constructs the power grid local topology tracking algorithm based on graph theory. The experimental results show that the local topology tracking algorithm based on graph theory can track the local topology of power grid quickly and effectively. Compared with the traditional method based on priority search, although the first power grid topology takes a relatively long time, it greatly improves the search and processing time after each time and has high efficiency in local topology. This shows that the local topology tracking algorithm based on graph theory needs less computation when carrying out the local topology of power grid. At the same time, the theory of power grid local topology tracking algorithm based on graph theory is relatively simple and easy to time, which is more practical than the traditional method.

Electricity ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 143-157
Author(s):  
Jovi Atkinson ◽  
Ibrahim M. Albayati

The operation and the development of power system networks introduce new types of stability problems. The effect of the power generation and consumption on the frequency of the power system can be described as a demand/generation imbalance resulting from a sudden increase/decrease in the demand and/or generation. This paper investigates the impact of a loss of generation on the transient behaviour of the power grid frequency. A simplified power system model is proposed to examine the impact of change of the main generation system parameters (system inertia, governor droop setting, load damping constant, and the high-pressure steam turbine power fraction), on the primary frequency response in responding to the disturbance of a 1.32 GW generation loss on the UK power grid. Various rates of primary frequency responses are simulated via adjusting system parameters of the synchronous generators to enable the controlled generators providing a fast-reliable primary frequency response within 10 s after a loss of generation. It is concluded that a generation system inertia and a governor droop setting are the most dominant parameters that effect the system frequency response after a loss of generation. Therefore, for different levels of generation loss, the recovery rate will be dependent on the changes of the governor droop setting values. The proposed model offers a fundamental basis for a further investigation to be carried on how a power system will react during a secondary frequency response.


2014 ◽  
Vol 960-961 ◽  
pp. 1029-1033
Author(s):  
Yong Chun Su ◽  
Kai Xuan Chang

In order to face the challenge of our economy and the environment, it is needed to speed up the energy structure transition and UItra High voltage (UHV) transmission has become an inevitable choice. Researches on the influence of UHV project to Jiangxi power grid are carried out in this paper. Using advanced digital power system simulator (ADPSS), the real-time simulation model of Jiangxi power grid is build up including the UHV project. Based on the simulation model, the problem of low frequency oscillation in Jiangxi power system is studied after the UHV power transmission project accessed. The influence of the UHV transmission line faults on system stability of Jiangxi grid is also researched.


Author(s):  
Yu Cai ◽  
Wei Li ◽  
Bao Zhang ◽  
Wenjian Wu ◽  
Deren Sheng ◽  
...  

Fast valving of ultra-supercritical unit has great effects on over-speed prevention, load-shedding control, transient stability analysis of electrical system and other security problems. The purpose of fast valving is to maintain the stability of power system once fault or load shedding of unit occurs in the electric power system. Therefore, it is of great significance to study the reliability of fast valving for ultra-supercritical unit. In this paper, the KU ( short shedding) logic condition of SIEMENS T3000 system is analyzed as the research object of fast valving. The unit can be avoided over speed by monitoring the unit load and fast valving under faulty grid conditions based on the KU control. A series of measures will be taken after KU is triggered, for instance the governing valving will be closed quickly and the DEH (digital electro-hydraulic) control of the steam turbine will be switched to speeding control mode. On the other hand, the unit will return to normal operation if the transient fault of power grid disappears. The key contributions of this thesis include three parts: Firstly, based on the analysis of control characteristics of ultra-supercritical unit and protective logic and triggered conditions of KU function, a novel dynamic model by coupling the fast valving of steam turbine and the transient stability of generator is established by applying the PSCAD software. Then, the dynamic response process of ultra-supercritical unit is simulated and calculated by adopting the coupling dynamic model when KU function is triggered. Also the influence factors and reliability of fast valving are analyzed under transient fault conditions. Finally, two optimized measures by increasing the time delay and the speed of quantitative judgment are put forward to reduce risks and avoid the misoperation of signal distortion which may be caused by the power transmitter under transient fault conditions. The results of this study can not only help to evaluate the reliability of fast valving function scientifically in power grid transient fault, but also guide the technicians to analyze the stability of the power grid.


2013 ◽  
Vol 732-733 ◽  
pp. 882-887
Author(s):  
Yong Chun Su ◽  
Hao Wei Jia

Mid-term stability assessment is an important work to support power system operation in a province power grid of China every year. The stability assessment method and process was introduced in this paper. As an example, the stability of Jiangxi province power system was evaluated in the following two years. Weak area and weak transmission line were found out in each power supply area. Prevention and control measures were proposed. According to problems among the assessment process and using the state monitoring data, an approach was discussed to increase the assessment result accuracy. The analysis conclusion provides the reference to the safe and stable operation of Jiangxi power system.


2014 ◽  
Vol 1008-1009 ◽  
pp. 1466-1469
Author(s):  
Gui Xing Wang ◽  
Zhe Heng Zhou ◽  
Shuai Zheng ◽  
Qing Xie ◽  
Chao Ping Rao ◽  
...  

In this research, a storage system, suitable for the power system of construction, is proposed and optimized. The storage system mainly consists of control system, converter, flywheel and motor. This system can release the pressure of the power grid during the on-peak period and supply the consumers with cheap energy. This research is going to analyze the characters of the system and then adjust its structure to the architecture.


Sign in / Sign up

Export Citation Format

Share Document