scholarly journals Deep Learning Approach for Stages of Severity Classification in Diabetic Retinopathy Using Color Fundus Retinal Images

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Silky Goel ◽  
Siddharth Gupta ◽  
Avnish Panwar ◽  
Sunil Kumar ◽  
Madhushi Verma ◽  
...  

Diabetes is a very fast-growing disease in India, with currently more than 72 million patients. Prolonged diabetes (about almost 20 years) can cause serious loss to the tiny blood vessels and neurons in the patient eyes, called diabetic retinopathy (DR). This first causes occlusion and then rapid vision loss. The symptoms of the disease are not very conspicuous in its early stage. The disease is featured by the formation of bloated structures in the retinal area called microaneurysms. Because of negligence, the condition of the eye worsens into the generation of more severe blots and damage to retinal vessels causing complete loss of vision. Early screening and monitoring of DR can reduce the risk of vision loss in patients with high possibilities. But the diabetic retinopathy detection and its classification by a human, is a challenging and error-prone task, because of the complexity of the image captured by color fundus photography. Machine learning algorithms armed with some feature extraction techniques have been employed earlier to detect and classify the levels of DR. However, these techniques provide below-par accuracy. Now, with the advent of deep learning (DL) techniques in computer vision, it has become possible to achieve very high levels of accuracy. DL models are an abstraction of the human brain coupled with the eyes. To create a model from scratch and train it is a cumbersome task requiring a huge amount of images. This deficiency of the DL techniques can be patched up by employing another technique to a task called transfer learning. In this, a DL model is trained on image metadata, and to learn features it used hundreds of classes from the DR fundus images. This enables professionals to create models capable of classifying unseen images into a proper grade or level with acceptable accuracy. This paper proposed a DL model coupled with different classifiers to classify the fundus image into its correct class of severity. We have trained the model on IDRD images and it has proven to show very high accuracy.

Author(s):  
Adwait Patil

Abstract: Alzheimer’s disease is one of the neurodegenerative disorders. It initially starts with innocuous symptoms but gradually becomes severe. This disease is so dangerous because there is no treatment, the disease is detected but typically at a later stage. So it is important to detect Alzheimer at an early stage to counter the disease and for a probable recovery for the patient. There are various approaches currently used to detect symptoms of Alzheimer’s disease (AD) at an early stage. The fuzzy system approach is not widely used as it heavily depends on expert knowledge but is quite efficient in detecting AD as it provides a mathematical foundation for interpreting the human cognitive processes. Another more accurate and widely accepted approach is the machine learning detection of AD stages which uses machine learning algorithms like Support Vector Machines (SVMs) , Decision Tree , Random Forests to detect the stage depending on the data provided. The final approach is the Deep Learning approach using multi-modal data that combines image , genetic data and patient data using deep models and then uses the concatenated data to detect the AD stage more efficiently; this method is obscure as it requires huge volumes of data. This paper elaborates on all the three approaches and provides a comparative study about them and which method is more efficient for AD detection. Keywords: Alzheimer’s Disease (AD), Fuzzy System , Machine Learning , Deep Learning , Multimodal data


Author(s):  
Mohammad Shorfuzzaman ◽  
M. Shamim Hossain ◽  
Abdulmotaleb El Saddik

Diabetic retinopathy (DR) is one of the most common causes of vision loss in people who have diabetes for a prolonged period. Convolutional neural networks (CNNs) have become increasingly popular for computer-aided DR diagnosis using retinal fundus images. While these CNNs are highly reliable, their lack of sufficient explainability prevents them from being widely used in medical practice. In this article, we propose a novel explainable deep learning ensemble model where weights from different models are fused into a single model to extract salient features from various retinal lesions found on fundus images. The extracted features are then fed to a custom classifier for the final diagnosis of DR severity level. The model is trained on an APTOS dataset containing retinal fundus images of various DR grades using a cyclical learning rates strategy with an automatic learning rate finder for decaying the learning rate to improve model accuracy. We develop an explainability approach by leveraging gradient-weighted class activation mapping and shapely adaptive explanations to highlight the areas of fundus images that are most indicative of different DR stages. This allows ophthalmologists to view our model's decision in a way that they can understand. Evaluation results using three different datasets (APTOS, MESSIDOR, IDRiD) show the effectiveness of our model, achieving superior classification rates with a high degree of precision (0.970), sensitivity (0.980), and AUC (0.978). We believe that the proposed model, which jointly offers state-of-the-art diagnosis performance and explainability, will address the black-box nature of deep CNN models in robust detection of DR grading.


When pancreas fails to secrete sufficient insulin in the human body, the glucose level in blood either becomes too high or too low. This fluctuation in glucose level affects different body organs such as kidney, brain, and eye. When the complications start appearing in the eyes due to Diabetic Mellitus (DM), it is called Diabetic Retinopathy (DR). DR can be categorized in several classes based on the severity, it can be Microaneurysms (ME), Haemorrhages (HE), Hard and Soft Exudates (EX and SE). DR is a slow start process that starts with very mild symptoms, becomes moderate with the time and results in complete vision loss, if not detected on time. Early-stage detection may greatly bolster in vision loss. However, it is impassable to detect the symptoms of DR with naked eyes. Ophthalmologist harbor to the several approaches and algorithm which makes use of different Machine Learning (ML) methods and classifiers to overcome this disease. The burgeoning insistence of Convolutional Neural Network (CNN) and their advancement in extracting features from different fundus images captivate several researchers to strive on it. Transfer Learning (TL) techniques help to use pre-trained CNN on a dataset that has finite training data, especially that in under developing countries. In this work, we propose several CNN architecture along with distinct classifiers which segregate the different lesions (ME and EX) in DR images with very eye-catching accuracies.


Author(s):  
Nirmal Yadav

Applying machine learning in life sciences, especially diagnostics, has become a key area of focus for researchers. Combining machine learning with traditional algorithms provides a unique opportunity of providing better solutions for the patients. In this paper, we present study results of applying the Ridgelet Transform method on retina images to enhance the blood vessels, then using machine learning algorithms to identify cases of Diabetic Retinopathy (DR). The Ridgelet transform provides better results for line singularity of image function and, thus, helps to reduce artefacts along the edges of the image. The Ridgelet Transform method, when compared with earlier known methods of image enhancement, such as Wavelet Transform and Contourlet Transform, provided satisfactory results. The transformed image using the Ridgelet Transform method with pre-processing quantifies the amount of information in the dataset. It efficiently enhances the generation of features vectors in the convolution neural network (CNN). In this study, a sample of fundus photographs was processed, which was obtained from a publicly available dataset. In pre-processing, first, CLAHE was applied, followed by filtering and application of Ridgelet transform on the patches to improve the quality of the image. Then, this processed image was used for statistical feature detection and classified by deep learning method to detect DR images from the dataset. The successful classification ratio was 98.61%. This result concludes that the transformed image of fundus using the Ridgelet Transform enables better detection by leveraging a transform-based algorithm and the deep learning.


Electronics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 274 ◽  
Author(s):  
Thippa Reddy Gadekallu ◽  
Neelu Khare ◽  
Sweta Bhattacharya ◽  
Saurabh Singh ◽  
Praveen Kumar Reddy Maddikunta ◽  
...  

Diabetic Retinopathy is a major cause of vision loss and blindness affecting millions of people across the globe. Although there are established screening methods - fluorescein angiography and optical coherence tomography for detection of the disease but in majority of the cases, the patients remain ignorant and fail to undertake such tests at an appropriate time. The early detection of the disease plays an extremely important role in preventing vision loss which is the consequence of diabetes mellitus remaining untreated among patients for a prolonged time period. Various machine learning and deep learning approaches have been implemented on diabetic retinopathy dataset for classification and prediction of the disease but majority of them have neglected the aspect of data pre-processing and dimensionality reduction, leading to biased results. The dataset used in the present study is a diabetes retinopathy dataset collected from the UCI machine learning repository. At its inceptions, the raw dataset is normalized using the Standardscalar technique and then Principal Component Analysis (PCA) is used to extract the most significant features in the dataset. Further, Firefly algorithm is implemented for dimensionality reduction. This reduced dataset is fed into a Deep Neural Network Model for classification. The results generated from the model is evaluated against the prevalent machine learning models and the results justify the superiority of the proposed model in terms of Accuracy, Precision, Recall, Sensitivity and Specificity.


Author(s):  
Liang Zhu ◽  
Robert Flower

Diabetic retinopathy refers to diabetes-related complications in the retina, It is a progressive disease and its symptoms in the eyes can vary from non-vision threatening to vision loss, and it can lead to permanent damage to the neuronal retinal tissue. The irreversible nature of the damage suggests that prevention of diabetes by eliminating risk factors and early screening are the cornerstone of relevant treatment to stop or limit visual damage in those patients.


2007 ◽  
Vol 4 (3_suppl) ◽  
pp. S9-S11 ◽  
Author(s):  
Paul M Dodson

Diabetic eye disease is the major cause of blindness and vision loss among working-age people in developed countries. Microangiopathy and capillary occlusion underlie the pathogenesis of disease. While laser treatment is regarded as the standard therapy, intensive medical management of glycaemia and hypertension is also a priority in order to reduce the risk of diabetic retinopathy. Recent data have prompted a re-evaluation of the role of lipid-modifying therapy in reducing diabetic retinopathy. The Fenofibrate Intervention for Event Lowering in Diabetes (FIELD) study demonstrated a significant 30% relative reduction in the need for first retinal laser therapy in patients with (predominantly early-stage) type 2 diabetes treated with fenofibrate 200 mg daily, from 5.2% with placebo to 3.6% with fenofibrate, p=0.0003. The benefit of fenofibrate was evident within the first year of treatment. These promising data justify further evaluation of the mechanism and role of fenofibrate, in addition to standard therapy, in the management of diabetic retinopathy.


2021 ◽  
Author(s):  
Xiaoyan Shen ◽  
He Ma ◽  
Ruibo Liu ◽  
Hong Li ◽  
Jiachuan He ◽  
...  

Abstract Background: Breast cancer is one of the most serious diseases threatening women’s health. Early screening based on ultrasound can help to detect and treat tumors in early stage. However, due to the lack of radiologists with professional skills, ultrasound based breast cancer screening has not been widely used in rural area. Computer-aided diagnosis (CAD) technology can effectively alleviates this problem. Since Breast Ultrasound (BUS) images have low resolution and speckle noise, lesion segmentation, which is an important step in CAD system, is challenging.Results: Two datasets were used for evaluation. Dataset A comprises 500 BUS images from local hospitals, while dataset B comprises 205 BUS images from open source. The experimental results show that the proposed method outperformed its related classic segmentation methods and the state-of-the-art deep learning model, RDAU–NET. And its’ Accuracy(Acc), Dice efficient(DSC) and Jaccard Index(JI) reached 96.25%, 78.4% and 65.34% on dataset A, and ACC, DC and Sen reached 97.96%, 86.25% and 88.79% on dataset B.Conclusions: We proposed an adaptive morphology snake based on marked watershed(AMSMW) algorithm for BUS images segmentation. It was proven to be robust, efficient and effective. In addition, it was found to be more sensitive to malignant lesions than benign lesions. What’s more, since the Rectangular Region of Interest(RROI) in the proposed method is drawn manually, we will consider adding deep learning network to automatically identify RROI, and completely liberate the hands of radiologists.Methods: The proposed method consists of two main steps. In the first step, we used Contrast Limited Adaptive Histogram Equalization(CLAHE) and Side Window Filter(SWF) to preprocess BUS images. Therefore, lesion contours can be effectively highlighted and the influence of noise can be eliminated to a great extent. In the second step, we proposed adaptative morphology snake(AMS) as an embedded segmentation function of AMSMW. It can adjust working parameters adaptively, according to different lesions’ size. By combining segmentation results of AMS with marker region obtained by morphological method, we got the marker region of marked watershed (MW). Finally, we obtained candidate contours by MW. And the best lesion contour was chosen by maximum Average Radial Derivative(ARD).


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 542
Author(s):  
Muhammad Mateen ◽  
Tauqeer Safdar Malik ◽  
Shaukat Hayat ◽  
Musab Hameed ◽  
Song Sun ◽  
...  

In diabetic retinopathy (DR), the early signs that may lead the eyesight towards complete vision loss are considered as microaneurysms (MAs). The shape of these MAs is almost circular, and they have a darkish color and are tiny in size, which means they may be missed by manual analysis of ophthalmologists. In this case, accurate early detection of microaneurysms is helpful to cure DR before non-reversible blindness. In the proposed method, early detection of MAs is performed using a hybrid feature embedding approach of pre-trained CNN models, named as VGG-19 and Inception-v3. The performance of the proposed approach was evaluated using publicly available datasets, namely “E-Ophtha” and “DIARETDB1”, and achieved 96% and 94% classification accuracy, respectively. Furthermore, the developed approach outperformed the state-of-the-art approaches in terms of sensitivity and specificity for microaneurysms detection.


Sign in / Sign up

Export Citation Format

Share Document