scholarly journals Wireless Sensor Network-Based Mathematical Modeling for Communication Intelligent Monitoring System

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Ying Shen

Knowing the behavioral patterns of city residents is of great value in formulating and adjusting urban planning strategies, such as urban road planning, urban commercial development, and urban pedestrian flow control. Based on the high penetration rate of cell phones, it is possible to indirectly understand the behavior of city residents based on the call records of users. However, the behavioral patterns of large-scale users over a long period of time can present characteristics such as large dispersion, difficult to discover patterns, and difficult to explain behavioral patterns. In this paper, we design and implement a human behavior pattern analysis system based on massive mobile communication data based on serial data modeling method and visual analysis technology. For the problem that it is difficult to capture the behavioral patterns of residents in cities in call records, this paper constructs base station trajectories based on users’ cell phone call records and uses users’ long-time base station trajectories to mine users’ potential behavioral patterns. Since users with similar activity characteristics will exhibit similar base station trajectories, this paper focuses on the similarity between text sequences and base station trajectory sequences and combines the word embedding method in natural language processing to build a Cell2vec model to identify the semantics of base stations in cities. In order to obtain the group behavior patterns of users from the base station trajectories of group users, a user clustering method based on users’ regional mobile preferences is proposed, and the results are projected using the Stochastic Neighbor Embedding (t-SNE) algorithm to expose the clustering features of large-scale cell phone users in the low-dimensional space. To address the problem that user behavior patterns are difficult to interpret, a visual analysis model with group as well as regional semantics is designed for the spatial and temporal characteristics of user behavior. Among them, the clustering model uses the distance between scatter points to map the similarity between users, which helps analysts to explore the behavioral characteristics of group users.

Author(s):  
Yanbing Bai ◽  
Lu Sun ◽  
Haoyu Liu ◽  
Chao Xie

Large-scale population movements can turn local diseases into widespread epidemics. Grasping the characteristic of the population flow in the context of the COVID-19 is of great significance for providing information to epidemiology and formulating scientific and reasonable prevention and control policies. Especially in the post-COVID-19 phase, it is essential to maintain the achievement of the fight against the epidemic. Previous research focuses on flight and railway passenger travel behavior and patterns, but China also has numerous suburban residents with a not-high economic level; investigating their travel behaviors is significant for national stability. However, estimating the impacts of the COVID-19 for suburban residents’ travel behaviors remains challenging because of lacking apposite data. Here we submit bus ticketing data including approximately 26,000,000 records from April 2020–August 2020 for 2705 stations. Our results indicate that Suburban residents in Chinese Southern regions are more likely to travel by bus, and travel frequency is higher. Associated with the economic level, we find that residents in the economically developed region more likely to travel or carry out various social activities. Considering from the perspective of the traveling crowd, we find that men and young people are easier to travel by bus; however, they are exactly the main workforce. The indication of our findings is that suburban residents’ travel behavior is affected profoundly by economy and consistent with the inherent behavior patterns before the COVID-19 outbreak. We use typical regions as verification and it is indeed the case.


2017 ◽  
Vol 11 (01) ◽  
pp. 65-84 ◽  
Author(s):  
Denny Stohr ◽  
Iva Toteva ◽  
Stefan Wilk ◽  
Wolfgang Effelsberg ◽  
Ralf Steinmetz

Instant sharing of user-generated video recordings has become a widely used service on platforms such as YouNow, Facebook.Live or uStream. Yet, providing such services with a high QoE for viewers is still challenging, given that mobile upload speed and capacities are limited, and the recording quality on mobile devices greatly depends on the users’ capabilities. One proposed solution to address these issues is video composition. It allows to switch between multiple recorded video streams, selecting the best source at any given time, for composing a live video with a better overall quality for the viewers. Previous approaches have required an in-depth visual analysis of the video streams, which usually limited the scalability of these systems. In contrast, our work allows the stream selection to be realized solely on context information, based on video- and service-quality aspects from sensor and network measurements. The implemented monitoring service for a context-aware upload of video streams is evaluated in different network conditions, with diverse user behavior, including camera shaking and user mobility. We have evaluated the system’s performance based on two studies. First, in a user study, we show that a higher efficiency for the video upload as well as a better QoE for viewers can be achieved when using our proposed system. Second, by examining the overall delay for the switching between streams based on sensor readings, we show that a composition view change can efficiently be achieved in approximately four seconds.


2013 ◽  
Vol 299 ◽  
pp. 130-134
Author(s):  
Li Wei ◽  
Da Zhi Deng

In recent years,china input in the construction of the network management is constantly increasing;information technology has improved continuously,but,making a variety of network security incidents occur frequently,due to the vulnerability of the computer network system inherent,a direct impact on national security and social and political stability. Because of the popularity of computers and large-scale development of the Internet, network security has been increasing as the theme. Reasonable safeguards against violations of resources; regular Internet user behavior and so on has been the public's expectations of future Internet. This paper described a stable method of getting telnet user’s account in development of network management based on telnet protocol.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Yuanchang Zhong ◽  
Lin Cheng ◽  
Liang Zhang ◽  
Yongduan Song ◽  
Hamid Reza Karimi

The typical application backgrounds of large-scale WSN (wireless sensor networks) for the water environment monitoring in the Three Gorges Reservoir are large coverage area and wide distribution. To maximally prolong lifetime of large-scale WSN, a new energy-saving routing algorithm has been proposed, using the method of maximum energy-welfare optimization clustering. Firstly, temporary clusters are formed based on two main parameters, the remaining energy of nodes and the distance between a node and the base station. Secondly, the algorithm adjusts cluster heads and optimizes the clustering according to the maximum energy-welfare of the cluster by the cluster head shifting mechanism. Finally, in order to save node energy efficiently, cluster heads transmit data to the base station in single-hop and multihop way. Theoretical analysis and simulation results show that the proposed algorithm is feasible and advanced. It can efficiently save the node energy, balance the energy dissipation of all nodes, and prolong the network lifetime.


2021 ◽  
Author(s):  
Shuo Zhang ◽  
Shuo Shi ◽  
Tianming Feng ◽  
Xuemai Gu

Abstract Unmanned aerial vehicles (UAVs) have been widely used in communication systems due to excellent maneuverability and mobility. The ultra-high speed, ultra-low latency, and ultra-high reliability of 5th generation wireless systems (5G) have further promoted vigorous development of UAVs. Compared with traditional means of communication, UAV can provide services for ground terminal without time and space constraints, so it is often used as air base station (BS). Especially in emergency communications and rescue, it provides temporary communication signal coverage service for disaster areas. In the face of large-scale and scattered user coverage tasks, UAV's trajectory is an important factor affecting its energy consumption and communication performance. In this paper, we consider a UAV emergency communication network where UAV aims to achieve complete coverage of potential underlying D2D users (DUs). The trajectory planning problem is transformed into the deployment and connection problem of stop points (SPs). Aiming at trajectory length and sum throughput, two trajectory planning algorithms based on K-means are proposed. Due to the non-convexity of sum throughput optimization, we present a sub-optimal solution by using the successive convex approximation (SCA) method. In order to balance the relationship between trajectory length and sum throughput, we propose a joint evaluation index which is used as an objective function to further optimize trajectory. Simulation results show the validity of the proposed algorithms which have advantages over the well-known benchmark scheme in terms of trajectory length and sum throughput.


2019 ◽  
Vol 07 (10) ◽  
pp. 136-146
Author(s):  
Yifang Ji ◽  
Guomin Zhang ◽  
Shengxu Xie ◽  
Xiulei Wang

2021 ◽  
Vol 14 (1) ◽  
pp. 270-280
Author(s):  
Abhijit Halkai ◽  
◽  
Sujatha Terdal ◽  

A sensor network operates wirelessly and transmits detected information to the base station. The sensor is a small sized device, it is battery-powered with some electrical components, and the protocols should operate efficiently in such least resource availability. Here, we propose a novel improved framework in large scale applications where the huge numbers of sensors are distributed over an area. The designed protocol will address the issues that arise during its communication and give a consistent seamless communication system. The process of reasoning and learning in cognitive sensors guarantees data delivery in the network. Localization in Scarce and dense sensor networks is achieved by efficient cluster head election and route selection which are indeed based on cognition, improved Particle Swarm Optimization, and improved Ant Colony Optimization algorithms. Factors such as mobility, use of sensor buffer, power management, and defects in channels have been identified and solutions are presented in this research to build an accurate path based on the network context. The achieved results in extensive simulation prove that the proposed scheme outperforms ESNA, NETCRP, and GAECH algorithms in terms of Delay, Network lifetime, Energy consumption.


Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1844
Author(s):  
Minhoe Kim ◽  
Woongsup Lee ◽  
Dong-Ho Cho

In this paper, we investigate a deep learning based resource allocation scheme for massive multiple-input-multiple-output (MIMO) communication systems, where a base station (BS) with a large scale antenna array communicates with a user equipment (UE) using beamforming. In particular, we propose Deep Scanning, in which a near-optimal beamforming vector can be found based on deep Q-learning. Through simulations, we confirm that the optimal beam vector can be found with a high probability. We also show that the complexity required to find the optimum beam vector can be reduced significantly in comparison with conventional beam search schemes.


Sign in / Sign up

Export Citation Format

Share Document