scholarly journals A Novel Routing Protocol for Realistic Traffic Network Scenarios in VANET

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Gagan Deep Singh ◽  
Sunil Kumar ◽  
Hammam Alshazly ◽  
Sahar Ahmed Idris ◽  
Madhushi Verma ◽  
...  

The vehicular ad hoc network (VANET) has traditional routing protocols that evolved from mobile ad hoc networks (MANET). The standard routing protocols of VANET are geocast, topology, broadcast, geographic, and cluster-based routing protocols. They have their limitations and are not suitable for all types of VANET traffic scenarios. Hence, metaheuristics algorithms like evolutionary, trajectory, nature-inspired, and ancient-inspired algorithms can be integrated with standard routing algorithms of VANET to achieve optimized routing performance results in desired VANET traffic scenarios. This paper proposes integrating genetic algorithm (GA) in ant colony optimization (ACO) technique (GAACO) for an optimized routing algorithm in three different realistic VANET network traffic scenarios. The paper compares the traditional VANET routing algorithm along with the metaheuristics approaches and also discusses the VANET simulation scenario for experimental purposes. The implementation of the proposed approach is tested on the open-source network and traffic simulation tools to verify the results. The three different traffic scenarios were deployed on Simulation of Urban Mobility (SUMO) and tested using NS3.2. After comparing them, the results were satisfactory and it is found that the GAACO algorithm has performed better in all three different traffic scenarios. The realistic traffic network scenarios are taken from Dehradun City with four performance metric parameters including the average throughput, packet delivery ratio, end-to-end delay, and packet loss in a network. The experimental results conclude that the proposed GAACO algorithm outperforms particle swarm intelligence (PSO), ACO, and Ad-hoc on Demand Distance Vector Routing (AODV) routing protocols with an average significant value of 1.55%, 1.45%, and 1.23% in three different VANET network scenarios.

Author(s):  
Rajnesh Singh ◽  
Neeta Singh ◽  
Aarti Gautam Dinker

TCP is the most reliable transport layer protocol that provides reliable data delivery from source to destination node. TCP works well in wired networks but it is assumed that TCP is less preferred for ad-hoc networks. However, for application in ad-hoc networks, TCP can be modified to improve its performance. Various researchers have proposed improvised variants of TCP by only one or two measures. These one or two measures do not seem to be sufficient for proper analysis of improvised version of TCP. So, in this paper, the performance of different TCP versions is investigated with DSDV and AODV routing Protocols. We analyzed various performance measures such as throughput, delay, packet drop, packet delivery ratio and number of acknowledgements. The simulation results are carried out by varying number of nodes in network simulator tool NS2. It is observed that TCP Newreno achieved higher throughput and packet delivery ratio with both AODV and DSDV routing protocols.Whereas TCP Vegas achieved minimum delay and packet loss with both DSDV and AODV protocol. However TCP sack achieved minimum acknowledgment with both AODV and DSDV routing protocols. In this paper the comparison of all these TCP variants shows that TCP Newreno provides better performance with both AODV and DSDV protocols.


2022 ◽  
Vol 14 (1) ◽  
pp. 28
Author(s):  
Yelena Trofimova ◽  
Pavel Tvrdík

In wireless ad hoc networks, security and communication challenges are frequently addressed by deploying a trust mechanism. A number of approaches for evaluating trust of ad hoc network nodes have been proposed, including the one that uses neural networks. We proposed to use packet delivery ratios as input to the neural network. In this article, we present a new method, called TARA (Trust-Aware Reactive Ad Hoc routing), to incorporate node trusts into reactive ad hoc routing protocols. The novelty of the TARA method is that it does not require changes to the routing protocol itself. Instead, it influences the routing choice from outside by delaying the route request messages of untrusted nodes. The performance of the method was evaluated on the use case of sensor nodes sending data to a sink node. The experiments showed that the method improves the packet delivery ratio in the network by about 70%. Performance analysis of the TARA method provided recommendations for its application in a particular ad hoc network.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
HyungJune Lee

We present a greedy data transportation scheme with hard packet deadlines in ad hoc sensor networks of stationary nodes and multiple mobile nodes with scheduled trajectory path and arrival time. In the proposed routing strategy, each stationary ad hoc node en route decides whether to relay a shortest-path stationary node toward destination or a passing-by mobile node that will carry closer to destination. We aim to utilize mobile nodes to minimize the total routing cost as far as the selected route can satisfy the end-to-end packet deadline. We evaluate our proposed routing algorithm in terms of routing cost, packet delivery ratio, packet delivery time, and usability of mobile nodes based on network level simulations. Simulation results show that our proposed algorithm fully exploits the remaining time till packet deadline to turn into networking benefits of reducing the overall routing cost and improving packet delivery performance. Also, we demonstrate that the routing scheme guarantees packet delivery with hard deadlines, contributing to QoS improvement in various network services.


Author(s):  
MONALI SAHOO ◽  
ASHISH CHAURASIA

Mobile ad hoc networks (MANETs) can be defined as a collection of large number of mobile nodes that form temporary network without aid of any existing network infrastructure or central access point. The Efficient routing protocols can provide significant benefits to mobile ad hoc networks, in terms of both performance and reliability. Many routing protocols for such networks have been proposed so far. The main method for evaluating the performance of MANETs is simulation. The Network Simulator is a discrete event driven simulator. The goal of ns-2 is to support networking ,research, and education. In this paper we create a new Routing Protocol called My Router step by step in Ns-2.Then we evaluate its performance based on several parameters such as Packet Delivery Ratio , End to End Delay etc and compare it with MANET routing protocol OLSR .


Author(s):  
Raúl Aquino-Santos ◽  
Víctor Rangel-Licea ◽  
Miguel A. García-Ruiz ◽  
Apolinar González-Potes ◽  
Omar Álvarez-Cardenas ◽  
...  

This chapter proposes a new routing algorithm that allows communication in vehicular ad hoc networks. In vehicular ad hoc networks, the transmitter node cannot determine the immediate future position of the receiving node beforehand. Furthermore, rapid topological changes and limited bandwidth compound the difficulties nodes experience when attempting to exchange position information. The authors first validate their algorithm in a small-scale network with test bed results. Then, for large-scale networks, they compare their protocol with the models of two prominent reactive routing algorithms: Ad-Hoc On-Demand Distance Vector and Dynamic Source Routing on a multi-lane circular dual motorway, representative of motorway driving. Then the authors compare their algorithm with motorway vehicular mobility, a location-based routing algorithm, on a multi-lane circular motorway. This chapter then provides motorway vehicular mobility results of a microscopic traffic model developed in OPNET, which the authors use to evaluate the performance of each protocol in terms of: Route Discovery Time, End to End Delay, Routing Overhead, Overhead, Routing Load, and Delivery Ratio.


2019 ◽  
Vol 8 (3) ◽  
pp. 6554-6562

Wireless Ad hoc Network is established by a collection of mobile nodes without any fixed infrastructure, where each node plays a role of the router. There are not any centralize control to handle the routing process of network, due to the dynamic tropology and infrastructure less network the network is vulnerable to various kinds of attacks. Therefore, numerous proactive, reactive and hybrid routing protocols have been recommended, among which one of the well-known a protocol is AODV due to its high-performance gain. This research work contributes towards mitigating network layer attacks on routing protocols in Wireless Ad hoc Networks. Problem and it's security issues because its consequences and existing mechanisms for detection and prevention with the context of AODV protocol is a challenge in Wireless Ad hoc Network, particularly in MANET and Sensor network. We present an AODV based secure routing algorithm for detection and prevention of different network layer attacks such as blackhole and rushing attacks. We use different types of security parameters like node sequence numbers, hop count, trust value, path value, acknowledge time, the threshold value and ALERT packet message to design a secure algorithm for AODV routing protocol. It shows enactment evaluation of AODV with the enhanced secure routing algorithm and existing routing algorithm through simulations which will confirm the effectiveness and accuracy of the algorithm by considering performance metrics like throughput, packet delivery ratio and end to end delay. Using network simulator NS-2.35 the experimental results have been shown an improvement in throughput, packet delivery ratio (PDR), and end to end delay using IDSAODV and results are compared with normal AODV routing protocol for blackhole and rushing attacks. The comparative results have been also shown with proposed IDSAODV and existing method


Today’s era is of smart technology, Computing intelligence and simulations. Many areas are now fully depended on simulation results for implementing real time workflow. Worldwide researchers and many automobile consortium are working to make intelligent Vehicular Ad hoc Network but till yet it is just a theory-based permutation. If we take VANET routing procedures then it is mainly focussing on AODV, DSDV and DSR routing protocols. Similarly, one more area of Swarm Intelligence is also attained attention of industry and researchers. Due the behavior of dynamic movement of vehicle and ants, Ant Colony Optimization is best suited for VANET performance simulations. Much of the work has already done and in progress for routing protocols in VANET but not focused on platooning techniques of vehicle nodes in VANET. In our research idea, we came up with a hypothesis that proposes efficient routing algorithm that made platooning in VANET optimized by minimizing the average delay waiting and stoppage time. In our methodology, we have used OMNET++, SUMO, Veins and Traci for testing of our hypothesis. Parameters that we took into consideration are end-to-end delay as an average, packet data delivery ratio, throughput, data packet size, number of vehicle nodes etc. Swarm Intelligence has proved a way forward in VANET scenarios and simulation for more accurate results. In this paper, we implemented Ant Colony Optimization technique in VANET simulation and proved through results that if it integrates with VANET routing scenarios then result will be at its best.


2021 ◽  
Vol 13 (2) ◽  
pp. 9-24
Author(s):  
Mahmoud Ali Al Shugran

Vehicular Ad hoc Networks (VANETs) is new sort in wireless ad-hoc networks. Vehicle-to-Vehicle (V2V) communication is one of the main communication paradigms that provide a level of safety and convenience to drivers and passengers on the road. In such environment, routing data packet is challenging due to frequently changed of network topology because of highly dynamic nature of vehicles. Thus, routing in VANETs in require for efficient protocols that guarantee message transmission among vehicles. Numerous routing protocols and algorithms have been proposed or enhanced to solve the aforementioned problems. Many position based routing protocols have been developed for routing messages that have been identified to be appropriate for VANETs. This work explores the performances of selected unicast non-delay tolerant overlay position-based routing protocols. The evaluation has been conducted in highway and urban environment in two different scenarios. The evaluation metrics that are used are Packet Delivery Ratio (PDR), Void Problem Occurrence (VPO), and Average Hop Count (AHC).


Symmetry ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 971 ◽  
Author(s):  
Qianqian Sang ◽  
Honghai Wu ◽  
Ling Xing ◽  
Ping Xie

With the development of Unmanned Air Vehicle (UAV) communication, Flying Ad Hoc Network (FANET) has become a hot research area in recent years, which is widely used in civil and military fields due to its unique advantages. FANET is a special kind of networks which are composed of UAV nodes, and can be used to implement data transfer in certain unique scenarios. To achieve reliable and robust communication among UAVs, a routing algorithm is the key factor and should be designed elaborately. Because of its importance and usefulness, this topic has attracted many researchers, and various routing protocols have also been put forward to improve the quality of data transmission in FANETs. Thus, in this paper, we give a survey on the state-of-the-art of routing protocols proposed in recent years. First, an in-depth research of the routing in FANETs recently has been brought out by absolutely differentiating them based on their routing mechanism. Then, we give a comparative analysis of each protocol based on their characteristics and service quality indicators. Finally, we propose some unsolved problems and future research directions for FANET routing.


Author(s):  
Tarek S. Sobh

Aim:: This work evaluates existing secure ant colony protocols of MANETs such as ASHFIK, AAMRP, and MANHSI with each other. Here, each node in the proposed ad hoc network protocols is known with a trust value. Each trust value represents the corresponding security level and a node with a higher trust value is authorized to monitor and lead as a core node its neighboring nodes. Background:: Trusted critical MANET is a secure wireless network that is used in different critical applications. Military battlefields are an example of these applications that force on people a number of needed things including robustness and reliable performance within high mobility situations and constraints (e.g. hostile attacks, cost, and battery limits). Objectives:: In this work, the extremely important similarity between the features of critical MANETs and the core-based routing protocols that are based-on ant colonies. Methods:: The metrics used in this evaluation are the availability, reliability, packet delivery ratio, and total overheads, while the performance is serious and stubborn because of the mobility of node, senders' number, and size of a multicast group. Results:: The results of the simulation show that ASHFIK provides better availability, reliability, Packet Delivery Ratio (PDR), and lower total overheads. In addition, the results show that ASHFIK remains consistent performance with a different group size of the network. It means a trusted and scalable network of ant colony core-based routing protocols. Conclusion:: here are existing different mobile ad hoc networks based-on ant colonies. According to our comparative study and state-of-the-art, the ASHFIK protocol can be used as a good routing protocol for critical MANETs that are based-on ant colonies.


Sign in / Sign up

Export Citation Format

Share Document