scholarly journals Protective Effect and Mechanism of Bone Morphogenetic Protein-4 on Apoptosis of Human Lens Epithelium Cells under Oxidative Stress

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Bei Du ◽  
Jia-Lin Zheng ◽  
Liang-Yu Huang ◽  
Hong Zhang ◽  
Qiong Wang ◽  
...  

Bone morphogenetic proteins (BMPs), a member of the transforming growth factor β (TGF-β) superfamily, are abundant in human ocular tissues and play an important role in lens development. Targeted deletion of BMP-4 in mice results in failure of lens placode formation. Following lens maturation, the formation of senile cataracts is demonstrably associated with free radical-related oxidative stress. Previous studies reported that BMPs play an antiapoptotic role in cells under oxidative stress, and the BMP-4 signal is important in inflammation regulation and homeostasis. BMP-4 evidently suppressed the apoptosis of human lens epithelial cells (HLECS) under oxidative stress induced by H2O2. This protective antiapoptotic effect is partly due to a decrease in caspase-3 activity and reactive oxygen species (ROS) level. Furthermore, the expression of activating transcription factor- (ATF-) 6 and Krüppel-like factor- (KLF-) 6 increased under oxidative stress and decreased after BMP-4 treatment.

2007 ◽  
Vol 232 (8) ◽  
pp. 979-992 ◽  
Author(s):  
Robert J. Wordinger ◽  
Abbot F. Clark

The human genome encodes at least 42 different members of the transforming growth factor-β superfamily of growth factors. Bone morphogenetic proteins (BMPs) are the largest subfamily of proteins within the transforming growth factor-β superfamily and are involved in numerous cellular functions including development, morphogenesis, cell proliferation, apoptosis, and extracellular matrix synthesis. This article first reviews BMPs and BMP receptors, BMP signaling pathways, and mechanisms controlling BMP signaling. Second, we review BMP and BMP receptor expression during embryonic ocular development/ differentiation and in adult ocular tissues. Lastly, future research directions with respect to BMP, BMP receptors, and ocular tissues are suggested.


Open Biology ◽  
2012 ◽  
Vol 2 (4) ◽  
pp. 120060 ◽  
Author(s):  
Elizabeth M. Callery ◽  
Chong Yon Park ◽  
Xin Xu ◽  
Haitao Zhu ◽  
James C. Smith ◽  
...  

Transforming growth factor β superfamily members signal through Smad transcription factors. Bone morphogenetic proteins (BMPs) act via Smads 1, 5 and 8 and TGF-βs signal through Smads 2 and 3. The endocytic adaptor protein Eps15R, or ‘epidermal growth factor (EGF) receptor pathway substrate 15-related protein’ is a component of EGF signal transduction, mediating internalization of the EGF receptor. We show that it interacts with Smad proteins, is required for BMP signalling in animal caps and stimulates Smad1 transcriptional activity. This function resides in the Asp-Pro-Phe motif-enriched ‘DPF domain’ of Eps15R, which activates transcription and antagonizes Smad2 signalling. In living cells, Eps15R segregates into spatially distinct regions with different Smads, indicating an unrecognized level of Smad compartmentalization.


2003 ◽  
Vol 14 (7) ◽  
pp. 2809-2817 ◽  
Author(s):  
Gyo Murakami ◽  
Tetsuro Watabe ◽  
Kunio Takaoka ◽  
Kohei Miyazono ◽  
Takeshi Imamura

Smad ubiquitin regulatory factor (Smurf) 1 binds to receptor-regulated Smads for bone morphogenetic proteins (BMPs) Smad1/5 and promotes their degradation. In addition, Smurf1 associates with transforming growth factor-β type I receptor through the inhibitory Smad (I-Smad) Smad7 and induces their degradation. Herein, we examined whether Smurf1 negatively regulates BMP signaling together with the I-Smads Smad6/7. Smurf1 and Smad6 cooperatively induced secondary axes in Xenopus embryos. Using a BMP-responsive promoter-reporter construct in mammalian cells, we found that Smurf1 cooperated with I-Smad in inhibiting BMP signaling and that the inhibitory activity of Smurf1 was not necessarily correlated with its ability to bind to Smad1/5 directly. Smurf1 bound to BMP type I receptors via I-Smads and induced ubiquitination and degradation of these receptors. Moreover, Smurf1 associated with Smad1/5 indirectly through I-Smads and induced their ubiquitination and degradation. Smurf1 thus controls BMP signaling with and without I-Smads through multiple mechanisms.


2000 ◽  
Vol 11 (2) ◽  
pp. 555-565 ◽  
Author(s):  
Kiyoshi Kusanagi ◽  
Hirofumi Inoue ◽  
Yasuhiro Ishidou ◽  
Hiromu K. Mishima ◽  
Masahiro Kawabata ◽  
...  

Bone morphogenetic proteins (BMPs) are pleiotropic growth and differentiation factors belonging to the transforming growth factor-β (TGF-β) superfamily. Signals of the TGF-β-like ligands are propagated to the nucleus through specific interaction of transmembrane serine/threonine kinase receptors and Smad proteins. GCCGnCGC has been suggested as a consensus binding sequence for DrosophilaMad regulated by a BMP-like ligand, Decapentaplegic. Smad1 is one of the mammalian Smads activated by BMPs. Here we show that Smad1 binds to this motif upon BMP stimulation in the presence of the common Smad, Smad4. The binding affinity is likely to be relatively low, because Smad1 binds to three copies of the motif weakly, but more repeats of the motif significantly enhance the binding. Heterologous reporter genes (GCCG-Lux) with multiple repeats of the motif respond to BMP stimulation but not to TGF-β or activin. Mutational analyses reveal several bases critical for the responsiveness. A natural BMP-responsive reporter, pTlx-Lux, is activated by BMP receptors in P19 cells but not in mink lung cells. In contrast, GCCG-Lux responds to BMP stimulation in both cells, suggesting that it is a universal reporter that directly detects Smad phosphorylation by BMP receptors.


2004 ◽  
Vol 24 (10) ◽  
pp. 4241-4254 ◽  
Author(s):  
Marcin Kowanetz ◽  
Ulrich Valcourt ◽  
Rosita Bergström ◽  
Carl-Henrik Heldin ◽  
Aristidis Moustakas

ABSTRACT Transforming growth factors β (TGF-βs) inhibit growth of epithelial cells and induce differentiation changes, such as epithelial-mesenchymal transition (EMT). On the other hand, bone morphogenetic proteins (BMPs) weakly affect epithelial cell growth and do not induce EMT. Smad4 transmits signals from both TGF-β and BMP pathways. Stimulation of Smad4-deficient epithelial cells with TGF-β1 or BMP-7 in the absence or presence of exogenous Smad4, followed by cDNA microarray analysis, revealed 173 mostly Smad4-dependent, TGF-β-, or BMP-responsive genes. Among 25 genes coregulated by both factors, inhibitors of differentiation Id2 and Id3 showed long-term repression by TGF-β and sustained induction by BMP. The opposing regulation of Id genes is critical for proliferative and differentiation responses. Hence, ectopic Id2 or Id3 expression renders epithelial cells refractory to growth inhibition and EMT induced by TGF-β, phenocopying the BMP response. Knockdown of endogenous Id2 or Id3 sensitizes epithelial cells to BMP, leading to robust growth inhibition and induction of transdifferentiation. Thus, Id genes sense Smad signals and create a permissive or refractory nuclear environment that defines decisions of cell fate and proliferation.


2010 ◽  
Vol 429 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Christopher C. Rider ◽  
Barbara Mulloy

The BMPs (bone morphogenetic proteins) and the GDFs (growth and differentiation factors) together form a single family of cystine-knot cytokines, sharing the characteristic fold of the TGFβ (transforming growth factor-β) superfamily. Besides the ability to induce bone formation, which gave the BMPs their name, the BMP/GDFs display morphogenetic activities in the development of a wide range of tissues. BMP/GDF homo- and hetero-dimers interact with combinations of type I and type II receptor dimers to produce multiple possible signalling complexes, leading to the activation of one of two competing sets of SMAD transcription factors. BMP/GDFs have highly specific and localized functions. These are regulated in a number of ways, including the developmental restriction of BMP/GDF expression and through the secretion of several specific BMP antagonist proteins that bind with high affinity to the cytokines. Curiously, a number of these antagonists are also members of the TGF-β superfamily. Finally a number of both the BMP/GDFs and their antagonists interact with the heparan sulphate side chains of cell-surface and extracellular-matrix proteoglycans.


2020 ◽  
Vol 117 (9) ◽  
pp. 4910-4920 ◽  
Author(s):  
Joonho Suh ◽  
Na-Kyung Kim ◽  
Seung-Hoon Lee ◽  
Je-Hyun Eom ◽  
Youngkyun Lee ◽  
...  

Growth and differentiation factor 11 (GDF11) and myostatin (MSTN) are closely related transforming growth factor β (TGF-β) family members, but their biological functions are quite distinct. While MSTN has been widely shown to inhibit muscle growth, GDF11 regulates skeletal patterning and organ development during embryogenesis. Postnatal functions of GDF11, however, remain less clear and controversial. Due to the perinatal lethality ofGdf11null mice, previous studies used recombinant GDF11 protein to prove its postnatal function. However, recombinant GDF11 and MSTN proteins share nearly identical biochemical properties, and most GDF11-binding molecules have also been shown to bind MSTN, generating the possibility that the effects mediated by recombinant GDF11 protein actually reproduce the endogenous functions of MSTN. To clarify the endogenous functions of GDF11, here, we focus on genetic studies and show thatGdf11null mice, despite significantly down-regulatingMstnexpression, exhibit reduced bone mass through impaired osteoblast (OB) and chondrocyte (CH) maturations and increased osteoclastogenesis, while the opposite is observed inMstnnull mice that display enhanced bone mass. Mechanistically,Mstndeletion up-regulatesGdf11expression, which activates bone morphogenetic protein (BMP) signaling pathway to enhance osteogenesis. Also, mice overexpressing follistatin (FST), a MSTN/GDF11 inhibitor, exhibit increased muscle mass accompanied by bone fractures, unlikeMstnnull mice that display increased muscle mass without fractures, indicating that inhibition of GDF11 impairs bone strength. Together, our findings suggest that GDF11 promotes osteogenesis in contrast to MSTN, and these opposing roles of GDF11 and MSTN must be considered to avoid the detrimental effect of GDF11 inhibition when developing MSTN/GDF11 inhibitors for therapeutic purposes.


Reproduction ◽  
2011 ◽  
Vol 142 (4) ◽  
pp. 581-591 ◽  
Author(s):  
Claire Glister ◽  
Leanne Satchell ◽  
Phil G Knight

Evidence supports local roles for transforming growth factor β superfamily members including activins and bone morphogenetic proteins (BMP) in follicle development. Access of these ligands to signalling receptors is likely modulated by extracellular binding proteins (BP). In this study, we comparedex vivoexpression of four BPs (chordin, gremlin, noggin and follistatin) in granulosal (GC) and theca interna (TC) compartments of developing bovine antral follicles (1–18 mm). Effects of FSH and IGF on BMP and BP expression by cultured GC, and effects of LH and BMPs on BP expression by cultured TC were also examined. Follicular expression of all four BP transcripts was higher in GC than TC compartments (P<0.001) a finding confirmed by immunohistochemistry. Follicle category affected (P<0.01) gremlin and follistatin mRNA abundance, with a significant cell-type×follicle category interaction for chordin, follistatin and noggin. Noggin transcript abundance was lower (P<0.05) in GC of large ‘E-active’ than ‘E-inactive’ follicles while follistatin mRNA level was higher (P<0.01). FSH enhanced CYP19, FSHR, INHBA and follistatin by GC without affecting BMP or BMP–BP expression. IGF increased CYP19 and follistatin, reduced BMP4, noggin and gremlin but did not affect chordin orFSHRmRNA levels. LH increased TC androgen secretion but had no effect on BMP or BP expression. BMPs uniformly suppressed TC androgen production whilst increasing chordin, noggin and gremlin mRNA levels up to 20-fold (P<0.01). These findings support the hypothesis that extracellular BP, mostly from GC, contribute to the regulation of intrafollicular BMP/activin signalling. Enhancement of thecal BP expression by BMP implies an autoregulatory feedback role to prevent excessive signalling.


Sign in / Sign up

Export Citation Format

Share Document