scholarly journals Development of an Autophagy-Related Gene Prognostic Model and Nomogram for Estimating Renal Clear Cell Carcinoma Survival

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Ying Wang ◽  
Yinhui Yao ◽  
Jingyi Zhao ◽  
Chunhua Cai ◽  
Junhui Hu ◽  
...  

Background. Kidney renal clear cell carcinoma (KIRC) is a fatal malignancy of the urinary system. Autophagy is implicated in KIRC occurrence and development. Here, we evaluated the prognostic value of autophagy-related genes (ARGs) in kidney renal clear cell carcinoma. Materials and Methods. We analyzed RNA sequencing and clinical KIRC patient data obtained from TCGA and ICGC to develop an ARG prognostic signature. Differentially expressed ARGs were further evaluated by functional assessment and bioinformatic analysis. Next, ARG score was determined in 215 KIRC patients using univariable Cox and LASSO regression analyses. An ARG nomogram was built based on multivariable Cox analysis. The prognosis nomogram model based on the ARG signatures and clinicopathological information was evaluated for discrimination, calibration, and clinical usefulness. Results. A total of 47 differentially expressed ARGs were identified. Of these, 8 candidates that significantly correlated with KIRC overall survival were subjected to LASSO analysis and an ARG score built. Functional enrichment and bioinformatic analysis were used to reveal the differentially expressed ARGs in cancer-related biological processes and pathways. Multivariate Cox analysis was used to integrate the ARG nomogram with the ARG signature and clinicopathological information. The nomogram exhibited proper calibration and discrimination (C-index = 0.75, AUC = >0.7). Decision curve analysis also showed that the nomogram was clinically useful. Conclusions. KIRC patients and doctors could benefit from ARG nomogram use in clinical practice.

PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0252452
Author(s):  
Ke Gong ◽  
Ting Xie ◽  
Yong Luo ◽  
Hui Guo ◽  
Jinlan Chen ◽  
...  

Introduction Kidney renal clear cell carcinoma (KIRC) has a high incidence globally, and its pathogenesis remains unclear. Long non-coding RNA (lncRNA), as a molecular sponge, participates in the regulation of competitive endogenous RNA (ceRNA). We aimed to construct a ceRNA network and screened out possible lncRNAs to predict KIRC prognosis. Material and methods All KIRC data were downloaded from the TCGA database and screened to find the possible target lncRNA; a ceRNA network was designed. Next, GO functional enrichment and KEGG pathway of differentially expressed mRNA related to lncRNA were performed. We used Kaplan-Meier curve analysis to predict the survival of these RNAs. We used Cox regression analysis to construct a model to predict KIRC prognosis. Results In the KIRC datasets, 1457 lncRNA, 54 miRNA and 2307 mRNA were screened out. The constructed ceRNA network contained 81 lncRNAs, nine miRNAs, and 17 mRNAs differentially expressed in KIRC. Survival analysis of all differentially expressed RNAs showed that 21 lncRNAs, four miRNAs, and two mRNAs were related to the overall survival rate. Cox regression analysis was performed again, and we found that eight lncRNAs were related to prognosis and used to construct predictive models. Three lnRNAs from independent samples were meaningful. Conclusion The construction of ceRNA network was involved in the process and transfer of KIRC, and three lncRNAs may be potential targets for predicting KIRC prognosis.


2021 ◽  
Vol 20 ◽  
pp. 153303382110362
Author(s):  
Chujie Chen ◽  
Yiyu Sheng

Kidney renal clear cell carcinoma (KIRC) is one of the most malignant diseases with poor survival rate over the world. The tumor microenvironment (TME) is highly related to the oncogenesis, development, and prognosis of KIRC. Thus, making the identification of KIRC biomarkers and immune infiltrates critically important. Microtubule Interacting and Trafficking Domain containing 1(MITD1) was reported to participate in cytokinesis of cell division. In the present study, multiple bioinformatics tools and databases were applied to investigate the expression level and clinical value of MITD1 in KIRC. We found that the expression of MITD1 was significantly increased in KIRC tissues. Further, the KIRC patients with high MITD1 levels showed a worse overall survival (OS) rate and disease free survival (DFS) rate. Otherwise, we found a significant correlation MITD1 expression and the abundance of CD8+ T cells. Functional enrichment analyses revealed that immune response and cytokine-cytokine receptor are very critical signaling pathways which associated with MITD1 in KIRC. In conclusion, our findings indicated that MITD1 may be a potential biomarker and associated with immune infiltration in KIRC.


2021 ◽  
Author(s):  
Yuqin Wei ◽  
Fan Wu ◽  
Shengfeng Zhang ◽  
Yanlin Tan ◽  
Qunying Wu ◽  
...  

Abstract Background The expression of GALNT14 in kidney renal clear cell carcinoma (KIRC) and its clinical significance remains unknown. Methods The KIRC data expressed by GALNT14 was downloaded from The Cancer Genome Atlas (TCGA) database. The expression of GALNT14 was analyzed by R software, Perl software and online analysis database. The relationship between GALNT14 expression and clinicopathological features in KIRC was analyzed by univariate, multivariate Cox regression and some databases. Gene Expression Profling Interactive Analysis (GEPIA), Starbase v3.0, UALCAN, and Kaplan-Meier were used to analyze the relationship between GALNT14 expression and overall survival (OS) in KIRC. UALCAN detects the expression of GALNT14 methylation in KIRC. Linkedomics and Genemania were used to analyze the gene co-expression of GALNT14. Gene Set Enrichment Analysis (GSEA) was performed to search for potential regulatory pathways. Results We found that GALNT14 was overexpressed in KIRC (p=1.433e-25). Patients with high GALNT14 expression in KIRC had a better prognosis than patients with low GALNT14 expression (p=0.008). In addition, high GALNT14 expression in KIRC was significantly associated with low T stage and positive OS (p<0.05). Univariate Cox analysis showed that GALNT14 was positively correlated with OS (p<0.001). Multivariate Cox analysis showed that GALNT14 was associated with OS (p<0.001), age (p=0.01) and histological grade (p=0.02). GALNT14 methylation is low expressed in KIRC (p<0.001). GSEA analysis showed that GALNT14 was enriched in histidine metabolism, peroxisome, and renin-angiotensin system pathways. Conclusion GALNT14 can be used as an independent prognostic factor for renal clear cell carcinoma and a potential target for clinical diagnosis and treatment of KIRC.


2021 ◽  
Author(s):  
Rongjiong Zheng ◽  
Yaosen SHao ◽  
Mingming Wang ◽  
Yeli Tang ◽  
Meiling Hu

Abstract BackgroundTumor microenvironment has been implicated in the development and progression of cancers. However, the prognostic significance of tumor microenvironment-related genes in kidney renal clear cell carcinoma (KIRC) remains unclear. MethodsIn this study, we obtained and analyzed gene expression profiles from The Cancer Genome Atlas database. Stromal and immune scores were calculated based on the ESTIMATE algorithm. ResultsIn the discovery series of 537 patients, we identified a list of differentially expressed genes which was significantly associated with prognosis in KIRC patients. Protein-protein interaction networks and functional enrichment analysis were both performed, indicating that these identified genes were related to the immune response. ConclusionsThe tumor microenvironment-related genes could serve as the potential biomarkers for KIRC.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Guangzhen Wu ◽  
Yingkun Xu ◽  
Chenglin Han ◽  
Zilong Wang ◽  
Jiayi Li ◽  
...  

Purpose. To construct a survival model for predicting the prognosis of patients with kidney renal clear cell carcinoma (KIRC) based on gene expression related to immune response regulation. Materials and Methods. KIRC mRNA sequencing data and patient clinical data were downloaded from the TCGA database. The pathways and genes involved in the regulation of the immune response were identified from the GSEA database. A single factor Cox analysis was used to determine the association of mRNA in relation to patient prognosis P < 0.05 . The prognostic risk model was further established using the LASSO regression curve. The survival prognosis model was constructed, and the sensitivity and specificity of the model were evaluated using the ROC curve. Results. Compared with normal kidney tissues, there were 28 dysregulated mRNA expressions in KIRC tissues P < 0.05 . Univariate Cox regression analysis revealed that 12 mRNAs were related to the prognosis of patients with renal cell carcinoma. The LASSO regression curve drew a risk signature consisting of six genes: TRAF6, FYN, IKBKG, LAT2, C2, IL4, EREG, TRAF2, and IL12A. The five-year ROC area analysis (AUC) showed that the model has good sensitivity and specificity (AUC >0.712). Conclusion. We constructed a risk prediction model based on the regulated immune response-related genes, which can effectively predict the survival of patients with KIRC.


2020 ◽  
Vol 40 (7) ◽  
Author(s):  
Weihao Tang ◽  
Yiling Cao ◽  
Xiaoke Ma

Abstract Kidney renal clear cell carcinoma (KIRC) is a common tumor with poor prognosis and is closely related to many aberrant gene expressions. DNA methylation is an important epigenetic modification mechanism and a novel research target. Thus, exploring the relationship between methylation-driven genes and KIRC prognosis is important. The methylation profile, methylation-driven genes, and methylation characteristics in KIRC was revealed through the integration of KIRC methylation, RNA-seq, and clinical information data from The Cancer Genome Atlas. The Lasso regression was used to establish a prognosis model on the basis of methylation-driven genes. Then, a trans-omics prognostic nomogram was constructed and evaluated by combining clinical information and methylated prognosis model. A total of 242 methylation-driven genes were identified. The Gene Ontology terms of these methylation-driven genes mainly clustered in the activation, adhesion, and proliferation of immune cells. The methylation prognosis prediction model that was established using the Lasso regression included four genes in the methylation data, namely, FOXI2, USP44, EVI2A, and TRIP13. The areas under the receiver operating characteristic curve of 1-, 3-, and 5-year survival rates were 0.810, 0.824, and 0.799, respectively, in the training group and 0.794, 0.752, and 0.731, respectively, in the testing group. An easy trans-omics nomogram was successfully established. The C-indices of the nomogram in the training and the testing groups were 0.8015 and 0.8389, respectively. The present study revealed the overall perspective of methylation-driven genes in KIRC and can help in the evaluation of the prognosis of KIRC patients and provide new clues for further study.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Lishan He ◽  
Huiming Jiang ◽  
Zhenqiang Lai ◽  
Zhixiong Zhong ◽  
Zhanqin Huang

Abstract Background Syntaxin4 (STX4) gene encodes the protein STX4, a member of soluble N-ethylmaleimide-sensitive factor attachment protein receptors protein, playing a vital role in cell invadopodium formation and invasion, which is associated with the malignant progression of various human cancers. However, the expression and prognostic significance of STX4 in kidney renal clear cell carcinoma (KIRC) remain to be investigated. Methods In this study, we collected the mRNA expression of STX4 in 535 KIRC patients from The Cancer Genome Atlasthrough the University of California Santa Cruz Xena database platform. Then we explored the expression of STX4 in KIRC, and the relationship with clinicopathological characteristics and prognostic value. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes function enrichment analyses were used to explore the potential mechanism of STX4 in KIRC. qRT-PCR analysis was performed toverify the above results with real world tissue specimens. Results The results indicated that STX4 was up-expressed in KIRC, and were associated with higher histological grade, advanced stage, and poorer prognosis. Moreover, elevated STX4 expression is an independent risk factor for KIRC. qRT-PCR analysis showed that STX4 was significantly elevated in 10 paired of KIRC samples compared to normal samples. Functional enrichment analysis indicated that endo/exocytosis, autophagy, mTOR signaling pathway, and NOD-like receptor signaling pathway were enriched. Conclusions In summary, STX4 is constantly up-expressed in KIRC tissues, associated with a poor prognosis. We suggest that it can be an effective biomarker for the prognosis of KIRC and may be a novel therapeutic target in KIRC.


2021 ◽  
Author(s):  
Yefei Huang ◽  
Qinzhi Wang ◽  
Yu Tang ◽  
Zixuan Liu ◽  
Guixiang Sun ◽  
...  

Abstract Cigarette smoking greatly promotes the progression of kidney renal clear cell carcinoma (KIRC), however, the underlying molecular events has not been fully established. In this study, RCC cells were exposed to the tobacco specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK, nicotine-derived nitrosamine ketone) for 120 days, and then the soft agar colony formation, wound healing and transwell assays were used to explore characteristics of RCC cells. RNA-seq was used to explore differentially expressed genes. We found that NNK promoted RCC cell growth and migration in a dose-dependent manner, and RNA-seq explored 14 differentially expressed genes. In TCGA-KIRC cohort, Lasso regression and multivariate COX regression models screened and constructed a five-gene signature containing ANKRD1, CYB5A, ECHDC3, MT1E, and AKT1S1. This novel gene signature significantly associated with TNM stage, invasion depth, metastasis, and tumor grade. Moreover, when compared with individual genes, the gene signature contained a higher hazard ratio and therefore had a more powerful value for the prognosis of KIRC. A nomogram was also developed based on clinical features and the gene signature, which showed good application. Finally, AKT1S1, the most crucial component of the gene signature, was significantly induced after NNK exposure and its related AKT-mTOR signaling pathway was dramatically activated. Our findings supported that NNK exposure would promote the KIRC progression, and the novel cigarette smoke-related five-gene signature might serve as a highly efficient biomarker to identify progression of KIRC patients, AKT1S1 might play an important role in cigarette smoke exposure-induced KIRC progression.


2020 ◽  
Author(s):  
Zhuolun Sun ◽  
Changying Jing ◽  
Chutian Xiao ◽  
Mingxiao Zhang ◽  
Zhenqing Wang ◽  
...  

Abstract Background: Kidney renal clear cell carcinoma (KIRC) is the most common and lethal renal cell carcinoma (RCC) histological subtype. Ferroptosis is a newly discovered programmed cell death and serves an essential role in tumor occurrence and development. The purpose of this study is to analyze ferroptosis-related gene (FRG) expression profiles and to construct a multi-gene signature for predicting the prognosis of KIRC patients.Methods:RNA-sequencing data and clinicopathological data of KIRC patients were downloaded from The Cancer Genome Atlas (TCGA). Differentially expressed FRGs between KIRC and normal tissues were identified using ‘limma’ package in R. GO and KEGG enrichment analyses were conducted to elucidate the biological functions and pathways of differentially expressed FRGs. Consensus clustering was used to investigate the relationship between the expression of FRGs and clinical phenotypes. Univariate and the least absolute shrinkage and selection operator (LASSO) Cox regression analysis were used to screen genes related to prognosis and construct the optimal signature. Then, a nomogram was established to predict individual survival probability by combining clinical features and prognostic signature.Results: A total of 19 differentially expressed FRGs were identified. Consensus clustering identified two clusters of KIRC patients with distinguished prognostic. Functional analysis revealed that metabolism-related pathways were enriched, especially lipid metabolism. A 7-gene ferroptosis-related prognostic signature was constructed to stratify the TCGA training cohort into high- and low-risk groups where the prognosis was significantly worse in the high-risk group. The signature was identified as an independent prognostic indicator for KIRC. These findings were validated in the testing cohort, the entire cohort, and the International Cancer Genome Consortium (ICGC) cohort. We further demonstrated that the signature-based risk score was highly associated with the KIRC progression. Further stratified survival analysis showed that the high-risk group had a significantly lower overall survival (OS) rate than those in the low-risk group. Moreover, we constructed a nomogram that had a strong ability to forecast the OS of the KIRC patients.Conclusion: We constructed a ferroptosis-related prognostic signature, which might provide a reliable prognosis assessment tool for clinician to guide clinical decision-making and outcomes research.


2020 ◽  
Author(s):  
Zhuolun Sun ◽  
Changying Jing ◽  
Chutian Xiao ◽  
Mingxiao Zhang ◽  
Zhenqing Wang ◽  
...  

Abstract Background: Kidney renal clear cell carcinoma (KIRC) is the most common and lethal renal cell carcinoma (RCC) histological subtype. Ferroptosis is a newly discovered programmed cell death and serves an essential role in tumor occurrence and development. The purpose of this study is to analyze ferroptosis-related gene (FRG) expression profiles and to construct a multi-gene signature for predicting the prognosis of KIRC patients.Methods:RNA-sequencing data and clinicopathological data of KIRC patients were downloaded from The Cancer Genome Atlas (TCGA). Differentially expressed FRGs between KIRC and normal tissues were identified using ‘limma’ package in R. GO and KEGG enrichment analyses were conducted to elucidate the biological functions and pathways of differentially expressed FRGs. Consensus clustering was used to investigate the relationship between the expression of FRGs and clinical phenotypes. Univariate and the least absolute shrinkage and selection operator (LASSO) Cox regression analysis were used to screen genes related to prognosis and construct the optimal signature. Then, a nomogram was established to predict individual survival probability by combining clinical features and prognostic signature.Results: A total of 19 differentially expressed FRGs were identified. Consensus clustering identified two clusters of KIRC patients with distinguished prognostic. Functional analysis revealed that metabolism-related pathways were enriched, especially lipid metabolism. A 7-gene ferroptosis-related prognostic signature was constructed to stratify the TCGA training cohort into high- and low-risk groups where the prognosis was significantly worse in the high-risk group. The signature was identified as an independent prognostic indicator for KIRC. These findings were validated in the testing cohort, the entire cohort, and the International Cancer Genome Consortium (ICGC) cohort. We further demonstrated that the signature-based risk score was highly associated with the KIRC progression. Further stratified survival analysis showed that the high-risk group had a significantly lower overall survival (OS) rate than those in the low-risk group. Moreover, we constructed a nomogram that had a strong ability to forecast the OS of the KIRC patients.Conclusion: We constructed a ferroptosis-related prognostic signature, which might provide a reliable prognosis assessment tool for clinician to guide clinical decision-making and outcomes research.


Sign in / Sign up

Export Citation Format

Share Document