scholarly journals Bilirubin Oxidation End Products (BOXes) Induce Neuronal Oxidative Stress Involving the Nrf2 Pathway

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yinzhong Lu ◽  
Wenyi Zhang ◽  
Bing Zhang ◽  
Stefan H. Heinemann ◽  
Toshinori Hoshi ◽  
...  

Delayed ischemic neurological deficit (DIND) is a severe complication after subarachnoid hemorrhage (SAH). Previous studies have suggested that bilirubin oxidation end products (BOXes) are probably associated with the DIND after SAH, but there is a lack of direct evidence yet even on cellular levels. In the present study, we aim to explore the potential role of BOXes and the involved mechanisms in neuronal function. We synthesized high-purity (>97%) BOX A and BOX B isomers. The pharmacokinetics showed they are permeable to the blood-brain barrier. Exposure of a moderate concentration (10 or 30 μM) of BOX A or BOX B to isolated primary cortical neurons increased the production of reactive oxygen species. In the human neuroblastoma SH-SY5Y cells, BOX A and BOX B decreased the mitochondrial membrane potential and enhanced nuclear accumulation of the protein Nrf2 implicated in oxidative injury repair. In addition, both chemicals increased the mRNA and protein expression levels of multiple antioxidant response genes including Hmox1, Gsta3, Blvrb, Gclm, and Srxn1, indicating that the antioxidant response element (ARE) transcriptional cascade driven by Nrf2 is activated. In conclusion, we demonstrated that primary cortical neurons and neuroblastoma cells undergo an adaptive response against BOX A- and BOX B-mediated oxidative stress by activation of multiple antioxidant responses, in part through the Nrf2 pathway, which provides in-depth insights into the pathophysiological mechanism of DIND after SAH or other neurological dysfunctions related to cerebral hemorrhage.

2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Amnah M. Alshangiti ◽  
Eszter Tuboly ◽  
Shane V. Hegarty ◽  
Cathal M. McCarthy ◽  
Aideen M. Sullivan ◽  
...  

Neuroblastoma is an embryonal malignancy that arises from cells of sympathoadrenal lineage during the development of the nervous system. It is the most common pediatric extracranial solid tumor and is responsible for 15% of childhood deaths from cancer. Fifty percent of cases are diagnosed as high-risk metastatic disease with a low overall 5-year survival rate. More than half of patients experience disease recurrence that can be refractory to treatment. Amplification of the MYCN gene is an important prognostic indicator that is associated with rapid disease progression and a poor prognosis, highlighting the need for new therapeutic approaches. In recent years, there has been an increasing focus on identifying anticancer properties of naturally occurring chalcones, which are secondary metabolites with variable phenolic structures. Here, we report that 4-hydroxychalcone is a potent cytotoxin for MYCN-amplified IMR-32 and SK-N-BE (2) neuroblastoma cells, when compared to non-MYCN-amplified SH-SY5Y neuroblastoma cells and to the non-neuroblastoma human embryonic kidney cell line, HEK293t. Moreover, 4-hydroxychalcone treatment significantly decreased cellular levels of the antioxidant glutathione and increased cellular reactive oxygen species. In addition, 4-hydroxychalcone treatment led to impairments in mitochondrial respiratory function, compared to controls. In support of this, the cytotoxic effect of 4-hydroxychalcone was prevented by co-treatment with either the antioxidant N-acetyl-L-cysteine, a pharmacological inhibitor of oxidative stress-induced cell death (IM-54) or the mitochondrial reactive oxygen species scavenger, Mito-TEMPO. When combined with the anticancer drugs cisplatin or doxorubicin, 4-hydroxychalcone led to greater reductions in cell viability than was induced by either anti-cancer agent alone. In summary, this study identifies a cytotoxic effect of 4-hydroxychalcone in MYCN-amplified human neuroblastoma cells, which rationalizes its further study in the development of new therapies for pediatric neuroblastoma.


2014 ◽  
Vol 6 (2) ◽  
pp. 331-338 ◽  
Author(s):  
M. Leirós ◽  
E. Alonso ◽  
M. E. Rateb ◽  
W. E. Houssen ◽  
R. Ebel ◽  
...  

2019 ◽  
Vol 20 (18) ◽  
pp. 4439 ◽  
Author(s):  
Gurunathan ◽  
Jeyaraj ◽  
Kang ◽  
Kim

The extensive usage of silver nanoparticles (AgNPs) as medical products such as antimicrobial and anticancer agents has raised concerns about their harmful effects on human beings. AgNPs can potentially induce oxidative stress and apoptosis in cells. However, humanin (HN) is a small secreted peptide that has cytoprotective and neuroprotective cellular effects. The aim of this study was to assess the harmful effects of AgNPs on human neuroblastoma SH-SY5Y cells and also to investigate the protective effect of HN from AgNPs-induced cell death, mitochondrial dysfunctions, DNA damage, and apoptosis. AgNPs were prepared with an average size of 18 nm diameter to study their interaction with SH-SY5Y cells. AgNPs caused a dose-dependent decrease of cell viability and proliferation, induced loss of plasma-membrane integrity, oxidative stress, loss of mitochondrial membrane potential (MMP), and loss of ATP content, amongst other effects. Pretreatment or co-treatment of HN with AgNPs protected cells from several of these AgNPs induced adverse effects. Thus, this study demonstrated for the first time that HN protected neuroblastoma cells against AgNPs-induced neurotoxicity. The mechanisms of the HN-mediated protective effect on neuroblastoma cells may provide further insights for the development of novel therapeutic agents against neurodegenerative diseases.


Antibiotics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 275
Author(s):  
Keith Wawrzeniak ◽  
Gauri Gaur ◽  
Eva Sapi ◽  
Alireza G. Senejani

Outer membrane vesicles (OMVs) are spherical bodies containing proteins and nucleic acids that are released by Gram-negative bacteria, including Borrelia burgdorferi, the causative agent of Lyme disease. The functional relationship between B. burgdorferi OMVs and host neuron homeostasis is not well understood. The objective of this study was to examine how B. burgdorferi OMVs impact the host cell environment. First, an in vitro model was established by co-culturing human BE2C neuroblastoma cells with B. burgdorferi B31. B. burgdorferi was able to invade BE2C cells within 24 h. Despite internalization, BE2C cell viability and levels of apoptosis remained unchanged, but resulted in dramatically increased production of MCP-1 and MCP-2 cytokines. Elevated secretion of MCP-1 has previously been associated with changes in oxidative stress. BE2C cell mitochondrial superoxides were reduced as early as 30 min after exposure to B. burgdorferi and OMVs. To rule out whether BE2C cell antioxidant response is the cause of decline in superoxides, superoxide dismutase 2 (SOD2) gene expression was assessed. SOD2 expression was reduced upon exposure to B. burgdorferi, suggesting that B. burgdorferi might be responsible for superoxide reduction. These results suggest that B. burgdorferi modulates cell antioxidant defense and immune system reaction in response to the bacterial infection. In summary, these results show that B. burgdorferi OMVs serve to directly counter superoxide production in BE2C neurons, thereby ‘priming’ the host environment to support B. burgdorferi colonization.


Nutrients ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2958
Author(s):  
Ryuto Nasu ◽  
Ayako Furukawa ◽  
Keita Suzuki ◽  
Masayoshi Takeuchi ◽  
Yoshiki Koriyama

Nutritional factors can affect the risk of developing neurological disorders and their rate of progression. In particular, abnormalities of carbohydrate metabolism in diabetes mellitus patients lead to an increased risk of neurological disorders such as Alzheimer’s disease (AD). In this study, we investigated the relationship between nervous system disorder and the pathogenesis of AD by exposing SH-SY5Y neuroblastoma cells to glyceraldehyde (GA). We previously reported that GA-derived toxic advanced glycation end products (toxic AGEs, TAGE) induce AD-like alterations including intracellular tau phosphorylation. However, the role of TAGE and their target molecules in the pathogenesis of AD remains unclear. In this study, we investigated the target protein for TAGE by performing two-dimensional immunoblot analysis with anti-TAGE antibody and mass spectrometry and identified β-tubulin as one of the targets. GA treatment induced TAGE-β-tubulin formation and abnormal aggregation of β-tubulin, and inhibited neurite outgrowth in SH-SY5Y cells. On the other hand, glucose-derived AGEs were also involved in developing AD. However, glucose did not make abnormal aggregation of β-tubulin and did not inhibit neurite outgrowth. Understanding the underlying mechanism of TAGE-β-tubulin formation by GA and its role in neurodegeneration may aid in the development of novel therapeutics and neuroprotection strategies.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Nora E. Gray ◽  
Jonathan A. Zweig ◽  
Donald G. Matthews ◽  
Maya Caruso ◽  
Joseph F. Quinn ◽  
...  

Centella asiatica has been used for centuries to enhance memory. We have previously shown that a water extract of Centella asiatica (CAW) protects against the deleterious effects of amyloid-β (Aβ) in neuroblastoma cells and attenuates Aβ-induced cognitive deficits in mice. Yet, the neuroprotective mechanism of CAW has yet to be thoroughly explored in neurons from these animals. This study investigates the effects of CAW on neuronal metabolism and oxidative stress in isolated Aβ-expressing neurons. Hippocampal neurons from amyloid precursor protein overexpressing Tg2576 mice and wild-type (WT) littermates were treated with CAW. In both genotypes, CAW increased the expression of antioxidant response genes which attenuated the Aβ-induced elevations in reactive oxygen species (ROS) and lipid peroxidation in Tg2576 neurons. CAW also improved mitochondrial function in both genotypes and increased the expression of electron transport chain enzymes and mitochondrial labeling, suggesting an increase in mitochondrial content. These data show that CAW protects against mitochondrial dysfunction and oxidative stress in Aβ-exposed hippocampal neurons which could contribute to the beneficial effects of the extract observed in vivo. Since CAW also improved mitochondrial function in the absence of Aβ, these results suggest a broader utility for other conditions where neuronal mitochondrial dysfunction occurs.


Sign in / Sign up

Export Citation Format

Share Document