scholarly journals The Effect of Particle Size on the Interpretation of Pore Structure of Shale by N2 Adsorption

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Chengfu Lyu ◽  
Xinmao Zhou ◽  
Xuesong Lu ◽  
Ying Zhang ◽  
Chao Li ◽  
...  

Gas adsorption experiments are becoming one of the most common methods to quantify and analyze the pore structures of shale samples in the petroleum industry. In this regard, particle size of the specimen plays an important role in the results that could ultimately affect the pore structure interpretation. Hence, in this study, five shale samples at different thermal maturity levels are picked, and all are crushed into different groups of particle sizes: less than 40 mesh (<375 μm), less than 60 mesh (<250 μm), less than 80 mesh (<187.5 μm), and less than 100 mesh (<150 μm). Next, N2 adsorption is used to characterize the pore structures of the samples within different particle sizes. Furthermore, to interpret the data, several attributes such as the pore volume, surface area, fractal dimension (from the fractal analysis), and heterogeneity index (from the multifractal analysis), are studied and compared between the samples and particle size intervals to provide us with the effect that particle size could have on the pore structure analysis. The results showed that as the particle size varies, the pore structures of the shale samples could get affected. Based on the comparison of the results, it is recommended that a suitable particle size for the shale pore structure characterization in N2 adsorption experiments should be less than 60 mesh (<250 μm).

2018 ◽  
Vol 140 (5) ◽  
Author(s):  
Shuwen Zhang ◽  
Xuefu Xian ◽  
Junping Zhou ◽  
Guojun Liu ◽  
Yaowen Guo ◽  
...  

In order to study the effects of particle size on the determination of pore structure in shale, the outcrop of Ordovician Wufeng (WF) and Silurian Longmaxi shale (LMX) samples from Sichuan basin were chosen and crushed into various particle sizes. Then, pore structure was analyzed by using low-pressure gas adsorption (LPGA) tests. The results show that the pore of shales is mainly composed of slit-type pores and open pores. The specific surface areas of shale are mainly contributed by micropores, while the largest proportion of the total pore volume in shale is contributed by mesopores. With the decreasing of particle size, the specific surface area of both samples is decreased, while average pore diameter and the total pore volume are increased gradually. The influences of particle size on the pore structure parameters are more significant for micropore and macropore, as the particle sizes decrease from 2.36 mm to 0.075 mm, the volume of micropores in Longmaxi shale increases from 0.283 cm3/100 g to 0.501 cm3/100 g with an increment almost 40%, while the volume of macropores decreases from 0.732 cm3/100 g to 0.260 cm3/100 g with a decrement about 50%. This study identified the fractal dimensions at relative pressures of 0–0.50 and 0.50–0.995 as D1 and D2, respectively. D1 increases with the decrease of particle size of shale, while D2 shows an opposite tendency in both shale samples.


2017 ◽  
Vol 264 ◽  
pp. 46-49
Author(s):  
Ahmad Kamil Fakhruddin Mokhtar ◽  
Hasmaliza Mohamad

Porous cordierite is among the special porous ceramic due to its extensive properties. In this research, porous cordierite was fabricated through gelcasting method. A mixture of raw materials (SiO2, Al2O3 and MgO) was melted at 1550 °C followed by quenching in water to produce a glass. Then the formed glass powder were milled for 1, 3, 5, 7 and 9 hours to obtain various particle sizes of cordierite powder. Cordierite powder produced was then used to prepare 3-D porous cordierite ceramic using gelcasting method. The cordierite pellets were characterized. Surface morphology was analysed via Scanning Electron Microscope (SEM) to observe the pore structure of porous cordierite formed from powder with various particle sizes.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8435
Author(s):  
Jianguo Zhang ◽  
Xiyuan Li ◽  
Jihong Jiao ◽  
Jianbao Liu ◽  
Feng Chen ◽  
...  

In order to investigate the difference of pore structure characteristics between mudstone and coal under different particle size conditions, samples acquired from Henan province were smashed and screened into three different particle sizes (20–40, 80–100, and >200 mesh) to conduct the experiments, using the high-pressure mercury intrusion porosimetry (MIP) and low-temperature N2 adsorption (LT-N2A) techniques. The results demonstrated that the proportion of open pores or semi-enclosed pores increased, and the pores became preferable contacted each other for both mudstone and coal during the crushing process. These variations of pore structure characteristics in the coal were beneficial to methane storage and migration. The total specific surface areas and pore volumes all showed a tendency of increasing continually for both mudstone and coal, as the particle sizes decreased from the LT-N2A test. The mudstone and coal were non-rigid aggregates with micropores, plate-shaped pores, and slit-shaped pores developed inside. The effect of the crushing process on the pore shape for the mudstone and coal was inappreciable. Moreover, the influence of the particle sizes on the mesopore was the most significant, followed by the macropore; and on the micropore, the influence was negligible for both mudstone and coal. The crushing process only had a significant impact on the pore structure of mudstone with a particle size of less than 100 mesh, while it could still alter the pore structure of coal with a particle size of larger than 100 mesh. It is believed that this work has a significant meaning to explore the diffusion and migration rules of coal-bed methane in coal.


2013 ◽  
Vol 60 (1) ◽  
Author(s):  
Mohd Azizi Che Yunus ◽  
Manzurudin Hasan ◽  
Norasikin Othman ◽  
Siti Hamidah Mohd-Setapar ◽  
Liza Md.-Salleh ◽  
...  

Kajian ini bertujuan untuk mengkaji kesan saiz zarah ke atas pengekstrakan sebatian catechin daripada biji Areca catechu L. dengan menggunakan Pengekstrakan Pelarut Terpecut (PPT). Saiz zarah biji Areca catechu dipelbagaikan dari 75 μm sehingga 500 μm. Pengekstrakan telah dijalankan padaparameter tetap iaitu suhu (140oC), tekanan (1500 psi), masa (10 minit), isipadu semburan (60%) dan satu kitaran pengekstrakan, masing-masing. Hasil minyak peratusan yang lebih tinggi adalah 300 mg minyak / gram sampel (30.00% pati minyak) ditemui pada 125 μm. Walaubagaimanapun, kandungan catechin dalam pati minyak hanya 0.0375 mg catechin / gram sampel. Saiz zarah yang terbaik dalam julat uji kaji ini telah dikenal pasti pada 500 μm yang memberikan kandungan catechin yang tinggi iaitu 0.0515 mg catechin / gram sampel dari 247.5 mg minyak / gram sampel (24.75% pati minyak). Kata kunci: Saiz zarah; catechin; LC-MS-TOF; pengekstrakan pelarut terpecut The purpose of this work is to investigate the effects of particle size on the extraction of catechincompound from Areca catechu L. seeds by using Accelerated Solvent Extraction (ASE). The particle sizes of Areca catechu L. seeds are varied from 75 µm until 500 µm. The extraction is conducted at fixed parameters which are temperature (140oC), pressure (1500 psi), extraction time (10 minutes), flush volume (60%) and the static cycle is done for 1 extraction cycle respectively. Higher percentage oil yield of 300mg oil/gram of sample (30.00% oil yield) is found at 125 µm. However, the amount of catechin in oil yields is only 0.0375 mg of catechin/gram of sample. The best of particle size within the experimental range has been identified at 500 µm which gives a high content of catechin with 0.0515 mg Catechin/gram of sample from 247.5 mg oil/gram of sample (24.75% oil yield). Keywords: Particle size; catechin; LC-MS-TOF; accelerated solvent extraction


TAPPI Journal ◽  
2020 ◽  
Vol 19 (11) ◽  
pp. 585-593
Author(s):  
ETHAN GLOR ◽  
BRIAN EINSLA ◽  
JOHN ROPER ◽  
JIAN YANG ◽  
VALERIY GINZBURG

Hollow sphere pigments (HSPs) are widely used at low levels in coated paper to increase coating bulk and to provide gloss to the final sheet. However, HSPs also provide an ideal system through which one can examine the effect of pigment size and particle packing within a coating due to their unimodal and tunable particle sizes. The work presented in Part 1 and Part 2 of this study will discuss the use of blends of traditional inorganic pigments and HSPs in coating formulations across a variety of applications for improved coating strength. Part 1 of this study focuses on the theory of bimodal spherical packing and demonstrates the predictive nature of packing models on the properties of coating systems containing HSPs of two different sizes. This study also examines conditions where the model fails by examining the effect of particle size on coating strength in sytems like thermal paper basecoats where the non-HSP component has a broad particle size distribution, and how these surprising trends can be used to generate better-than-expected thermal printing performance in systems with low HSP/clay ratios. Part 2 of this study focuses on the incorporation of HSPs of different particle sizes into paperboard formulations to affect coating strength and opacity.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Carola Contreras ◽  
Fernanda Isquierdo ◽  
Pedro Pereira-Almao ◽  
Carlos E. Scott

More than half of the total world oil reserves are heavy oil, extra heavy oil, and bitumen; however their catalytic conversion to more valuable products is challenging. The use of submicronic particles or nanoparticles of catalysts suspended in the feedstock may be a viable alternative to the conversion of heavy oils at refinery level or downhole (in situ upgrading). In the present work, molybdenum sulfide (MoS2) particles with varying diameters (10000–10 nm) were prepared using polyvinylpyrrolidone as capping agent. The prepared particles were characterized by DLS, TEM, XRD, and XPS and tested in the hydrodesulfurization (HDS) of a vacuum gas oil (VGO). A correlation between particle size and activity is presented. It was found that particles with diameters around 13 nm show double the HDS activity compared with the material with micrometric particle sizes (diameter ≈ 10,000 nm).


Author(s):  
Jesus Djalma PÉCORA ◽  
Ricardo Gariba SILVA ◽  
Ricardo Novak SAVIOLI ◽  
Luis Pascoal VANSAN

A study was conducted on the hardening time of three Grossman's cements with different powder particle sizes (60, 100 and 150 mesh) using Specification n. 57 of the AMERICAN DENTAL ASSOCIATION1 (1983). The cement obtained from mesh 150 particles showed the longest hardening time (22 minutes), which was different when compared to mesh 60 (17 minutes) and 100 (17 minutes) particles.


Sign in / Sign up

Export Citation Format

Share Document