Effect of Particle Size of Cordierite Powder on Pore Structure of Porous Cordierite

2017 ◽  
Vol 264 ◽  
pp. 46-49
Author(s):  
Ahmad Kamil Fakhruddin Mokhtar ◽  
Hasmaliza Mohamad

Porous cordierite is among the special porous ceramic due to its extensive properties. In this research, porous cordierite was fabricated through gelcasting method. A mixture of raw materials (SiO2, Al2O3 and MgO) was melted at 1550 °C followed by quenching in water to produce a glass. Then the formed glass powder were milled for 1, 3, 5, 7 and 9 hours to obtain various particle sizes of cordierite powder. Cordierite powder produced was then used to prepare 3-D porous cordierite ceramic using gelcasting method. The cordierite pellets were characterized. Surface morphology was analysed via Scanning Electron Microscope (SEM) to observe the pore structure of porous cordierite formed from powder with various particle sizes.

2011 ◽  
Vol 284-286 ◽  
pp. 726-729 ◽  
Author(s):  
Zai Yuan Li ◽  
Yu Chun Zhai ◽  
Myongil Pang

The 0.4mol•L-1CuSO4liquor and 5mol•L-1NaOH liquor were prepared by CuSO4·5H2O and NaOH as raw materials. The Cu2O powders were prepared by dextrose reducer and PVP dispersant. The Cu2O oxidation reaction DTA-TG-DTG curves were obtained by SDT 2960 simultaneous DSC-TGA analysis apparatus. The mensuration condition were that rise temperature velocity 15°C·min-1and deoxidize gas air. The Cu2O oxidation reaction kinetics was calculated by DTA-TG-DTG curves data. The results indicate that the cuprous oxide powders shape were spherical, their particle’ sizes were 100,200,1000nm. Their apparent activation energy were 164.38, 175.54, 282.65 KJ·mol-1, the apparent activation energy increase with Cu2O particle’ size. Their frequency factors were 1.22×1013, 1.40×1013, 2.88×1020, the frequency factors increase with particle’ size Cu2O. Their reaction progressions were 1.02, 1.00, 0.96, the reaction progression increase with Cu2O particle’ size decreased.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Chengfu Lyu ◽  
Xinmao Zhou ◽  
Xuesong Lu ◽  
Ying Zhang ◽  
Chao Li ◽  
...  

Gas adsorption experiments are becoming one of the most common methods to quantify and analyze the pore structures of shale samples in the petroleum industry. In this regard, particle size of the specimen plays an important role in the results that could ultimately affect the pore structure interpretation. Hence, in this study, five shale samples at different thermal maturity levels are picked, and all are crushed into different groups of particle sizes: less than 40 mesh (<375 μm), less than 60 mesh (<250 μm), less than 80 mesh (<187.5 μm), and less than 100 mesh (<150 μm). Next, N2 adsorption is used to characterize the pore structures of the samples within different particle sizes. Furthermore, to interpret the data, several attributes such as the pore volume, surface area, fractal dimension (from the fractal analysis), and heterogeneity index (from the multifractal analysis), are studied and compared between the samples and particle size intervals to provide us with the effect that particle size could have on the pore structure analysis. The results showed that as the particle size varies, the pore structures of the shale samples could get affected. Based on the comparison of the results, it is recommended that a suitable particle size for the shale pore structure characterization in N2 adsorption experiments should be less than 60 mesh (<250 μm).


2017 ◽  
Vol 888 ◽  
pp. 33-36
Author(s):  
Ahmad Kamil Fakhruddin Mokhtar ◽  
Hasmaliza Mohamad

In this research, cordierite was produced using oxide based raw materials (MgO, SiO2 and Al2O3) through glass route method. A mixture of raw material was gone through melting at 1550 °C followed by water quenching. Glass powder produced were then milled for 5 hour to get fine powder. Cordierite powder produced was then used to prepare 3-D porous cordierite ceramic. In this research, gelcasting method was choosen. The dispersant amount added in the cordierite slurry was varied (2.5-5.5g). The cordierite pellet were then characterized using x-ray difraction. Results shows high purity (99%) cordierite was obtained. The porosity and compressive strength were tested. The porosity show when increasing the dispersant amount, the porosity will decrease. For compressive strength increase when the dispersant amount increase.


2013 ◽  
Vol 60 (1) ◽  
Author(s):  
Mohd Azizi Che Yunus ◽  
Manzurudin Hasan ◽  
Norasikin Othman ◽  
Siti Hamidah Mohd-Setapar ◽  
Liza Md.-Salleh ◽  
...  

Kajian ini bertujuan untuk mengkaji kesan saiz zarah ke atas pengekstrakan sebatian catechin daripada biji Areca catechu L. dengan menggunakan Pengekstrakan Pelarut Terpecut (PPT). Saiz zarah biji Areca catechu dipelbagaikan dari 75 μm sehingga 500 μm. Pengekstrakan telah dijalankan padaparameter tetap iaitu suhu (140oC), tekanan (1500 psi), masa (10 minit), isipadu semburan (60%) dan satu kitaran pengekstrakan, masing-masing. Hasil minyak peratusan yang lebih tinggi adalah 300 mg minyak / gram sampel (30.00% pati minyak) ditemui pada 125 μm. Walaubagaimanapun, kandungan catechin dalam pati minyak hanya 0.0375 mg catechin / gram sampel. Saiz zarah yang terbaik dalam julat uji kaji ini telah dikenal pasti pada 500 μm yang memberikan kandungan catechin yang tinggi iaitu 0.0515 mg catechin / gram sampel dari 247.5 mg minyak / gram sampel (24.75% pati minyak). Kata kunci: Saiz zarah; catechin; LC-MS-TOF; pengekstrakan pelarut terpecut The purpose of this work is to investigate the effects of particle size on the extraction of catechincompound from Areca catechu L. seeds by using Accelerated Solvent Extraction (ASE). The particle sizes of Areca catechu L. seeds are varied from 75 µm until 500 µm. The extraction is conducted at fixed parameters which are temperature (140oC), pressure (1500 psi), extraction time (10 minutes), flush volume (60%) and the static cycle is done for 1 extraction cycle respectively. Higher percentage oil yield of 300mg oil/gram of sample (30.00% oil yield) is found at 125 µm. However, the amount of catechin in oil yields is only 0.0375 mg of catechin/gram of sample. The best of particle size within the experimental range has been identified at 500 µm which gives a high content of catechin with 0.0515 mg Catechin/gram of sample from 247.5 mg oil/gram of sample (24.75% oil yield). Keywords: Particle size; catechin; LC-MS-TOF; accelerated solvent extraction


TAPPI Journal ◽  
2020 ◽  
Vol 19 (11) ◽  
pp. 585-593
Author(s):  
ETHAN GLOR ◽  
BRIAN EINSLA ◽  
JOHN ROPER ◽  
JIAN YANG ◽  
VALERIY GINZBURG

Hollow sphere pigments (HSPs) are widely used at low levels in coated paper to increase coating bulk and to provide gloss to the final sheet. However, HSPs also provide an ideal system through which one can examine the effect of pigment size and particle packing within a coating due to their unimodal and tunable particle sizes. The work presented in Part 1 and Part 2 of this study will discuss the use of blends of traditional inorganic pigments and HSPs in coating formulations across a variety of applications for improved coating strength. Part 1 of this study focuses on the theory of bimodal spherical packing and demonstrates the predictive nature of packing models on the properties of coating systems containing HSPs of two different sizes. This study also examines conditions where the model fails by examining the effect of particle size on coating strength in sytems like thermal paper basecoats where the non-HSP component has a broad particle size distribution, and how these surprising trends can be used to generate better-than-expected thermal printing performance in systems with low HSP/clay ratios. Part 2 of this study focuses on the incorporation of HSPs of different particle sizes into paperboard formulations to affect coating strength and opacity.


2011 ◽  
Vol 133 (2) ◽  
Author(s):  
JiAn Duan ◽  
DeFu Liu

The purpose of this paper is to reveal material removal mechanisms of optical fiber end-surface in lapping processes. The lapping process experiments are conducted using fixed diamond abrasive lapping films with various particle sizes of 6 μm, 3 μm, 1 μm, and 0.5 μm. The micrographs of the optical fiber end-surfaces are observed using a scanning electron microscope. The experimental results show that there exist three material removal modes in the lapping processes: brittle fracture mode, semibrittle and semiductile mode, and ductile mode. These modes are mainly controlled by abrasive particle size, and there appears a brittle-ductile transition’s critical point when lapping films with a particle size of 3 μm are used to lap optical fiber end-surfaces. An interpretation is proposed for the formation mechanism of the plastic deformed layer on the optical fiber end-surfaces.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Carola Contreras ◽  
Fernanda Isquierdo ◽  
Pedro Pereira-Almao ◽  
Carlos E. Scott

More than half of the total world oil reserves are heavy oil, extra heavy oil, and bitumen; however their catalytic conversion to more valuable products is challenging. The use of submicronic particles or nanoparticles of catalysts suspended in the feedstock may be a viable alternative to the conversion of heavy oils at refinery level or downhole (in situ upgrading). In the present work, molybdenum sulfide (MoS2) particles with varying diameters (10000–10 nm) were prepared using polyvinylpyrrolidone as capping agent. The prepared particles were characterized by DLS, TEM, XRD, and XPS and tested in the hydrodesulfurization (HDS) of a vacuum gas oil (VGO). A correlation between particle size and activity is presented. It was found that particles with diameters around 13 nm show double the HDS activity compared with the material with micrometric particle sizes (diameter ≈ 10,000 nm).


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Qiuxiang Zhang ◽  
Xinhua Liu ◽  
Yankun Ren ◽  
Lifeng Wang ◽  
Yuan Hu

Aiming to study the effect of particle size on the wear property of magnetorheological fluid (MRF), experiment materials, preparation process, and test methods are elaborated, and three different MRF samples consisting of particles of different size are prepared. Test experiments are carried out and the effect of particle size on the wear property of MRF is discussed. Moreover, the microstructures of particles extracted from MRF obtained before and after the wear experiments are observed by scanning electron microscope (SEM). Experimental results show that the particle size has a significant effect on wear property of MRF. Furthermore, the MRF with particles of 1.5–2.8 μm diameter on average is good for the requirement of engineering applications.


2016 ◽  
Vol 680 ◽  
pp. 257-260
Author(s):  
Meng Yun Dong ◽  
Cheng Zhang ◽  
Jin Feng Xia ◽  
Hong Qiang Nian ◽  
Dan Yu Jiang

CaF2 nano-power was prepared by direct precipitation methods with Ca(NO3)2 and KF as raw materials. The influences of presintering temperature and sintering temperature on the particle size and distribution of CaF2 nano-power were studied by X-ray diffraction (XRD) and field-emission scanning electron microscopy (FESEM). This study provided an experimental method for preparation of CaF2 nano-power. The results show that the best presintering temperature of CaF2 nano-power is 500°C and the best sintering temperature of CaF2 ceramic is 900°C.


2006 ◽  
Vol 45 ◽  
pp. 1364-1370 ◽  
Author(s):  
H.S.L. Sithebe ◽  
David S. McLachlan ◽  
I.J. Sigalas ◽  
Mathias Herrmann

Al-cBN cermets have been hot pressed at temperature between 800oC and 1100oC and pressure of 50MPa in vacuum. The effect of particle size of the starting powders as well as the effect of starting compositions and temperature was investigated. The materials could only densify up to 84-92% of theoretical density. After hot pressing at 800oC only Al and cBN could be observed by XRD, whereas higher hot pressing temperature result in the formation of AlN and AlB2 which retard the densification. The microstructure of the hot pressed material was studied using scanning electron microscopy. It was observed that oxide layers exist at the interface between Al and cBN phases. The presence of these oxide layers resulted in blocking the Al from spreading and therefore preventing full densification.


Sign in / Sign up

Export Citation Format

Share Document