scholarly journals Molecular Descriptor Analysis of Certain Isomeric Natural Polymers

2021 ◽  
Vol 2021 ◽  
pp. 1-26
Author(s):  
Maqsood Ahmad ◽  
Muhammad Saeed ◽  
Muhammad Javaid ◽  
Ebenezer Bonyah

Polymers, drugs, and almost all chemical or biochemical compounds are frequently modeled as diverse ω -cyclic, acyclic, bipartite, and polygonal shapes and regular graphs. Molecular descriptors (topological indices) are the numerical quantities and computed from the molecular graph Γ (2D lattice). These descriptors are highly significant in quantitative structure-property or activity relationship (QSPR and QSAR) modeling that provides the theoretical and the optimal basis to expensive experimental drug design. In this paper, we study three isomeric natural polymers of glucose (polysaccharides), namely, cellulose, glycogen, and amylopectin (starch), having promising pharmaceutical applications, exceptional properties, and fascinating molecular structures. We intend to investigate and compute various closed-form formulas such as ABC , GA , sum-connectivity χ − 1 / 2 , ABC 4 , GA 5 , and Sanskruti indices for the aforementioned macromolecules. Also, we present the closed-form formulas for the first, second, modified, and augmented Zagreb indices, inverse and general Randić indices, and symmetric division deg, harmonic, and inverse sum indices. Furthermore, we provide a comparative analysis using 3D graphs for these families of macromolecules to clarify their nature.

2018 ◽  
Vol 16 (1) ◽  
pp. 73-78 ◽  
Author(s):  
Ashaq Ali ◽  
Waqas Nazeer ◽  
Mobeen Munir ◽  
Shin Min Kang

AbstractM-polynomial of different molecular structures helps to calculate many topological indices. This polynomial is a new idea and its beauty is the wealth of information it contains about the closed forms of degree-based topological indices of molecular graph G of the structure. It is a well-known fact that topological indices play significant role in determining properties of the chemical compound [1, 2, 3, 4]. In this article, we computed the closed form of M-polynomial of zigzag and rhombic benzenoid systemsbecause of their extensive usages in industry. Moreover we give graphs of M-polynomials and their relations with the parameters of structures.


2020 ◽  
Author(s):  
Artur Schweidtmann ◽  
Jan Rittig ◽  
Andrea König ◽  
Martin Grohe ◽  
Alexander Mitsos ◽  
...  

<div>Prediction of combustion-related properties of (oxygenated) hydrocarbons is an important and challenging task for which quantitative structure-property relationship (QSPR) models are frequently employed. Recently, a machine learning method, graph neural networks (GNNs), has shown promising results for the prediction of structure-property relationships. GNNs utilize a graph representation of molecules, where atoms correspond to nodes and bonds to edges containing information about the molecular structure. More specifically, GNNs learn physico-chemical properties as a function of the molecular graph in a supervised learning setup using a backpropagation algorithm. This end-to-end learning approach eliminates the need for selection of molecular descriptors or structural groups, as it learns optimal fingerprints through graph convolutions and maps the fingerprints to the physico-chemical properties by deep learning. We develop GNN models for predicting three fuel ignition quality indicators, i.e., the derived cetane number (DCN), the research octane number (RON), and the motor octane number (MON), of oxygenated and non-oxygenated hydrocarbons. In light of limited experimental data in the order of hundreds, we propose a combination of multi-task learning, transfer learning, and ensemble learning. The results show competitive performance of the proposed GNN approach compared to state-of-the-art QSPR models making it a promising field for future research. The prediction tool is available via a web front-end at www.avt.rwth-aachen.de/gnn.</div>


2020 ◽  
Author(s):  
Marc Philipp Bahlke ◽  
Natnael Mogos ◽  
Jonny Proppe ◽  
Carmen Herrmann

Heisenberg exchange spin coupling between metal centers is essential for describing and understanding the electronic structure of many molecular catalysts, metalloenzymes, and molecular magnets for potential application in information technology. We explore the machine-learnability of exchange spin coupling, which has not been studied yet. We employ Gaussian process regression since it can potentially deal with small training sets (as likely associated with the rather complex molecular structures required for exploring spin coupling) and since it provides uncertainty estimates (“error bars”) along with predicted values. We compare a range of descriptors and kernels for 257 small dicopper complexes and find that a simple descriptor based on chemical intuition, consisting only of copper-bridge angles and copper-copper distances, clearly outperforms several more sophisticated descriptors when it comes to extrapolating towards larger experimentally relevant complexes. Exchange spin coupling is similarly easy to learn as the polarizability, while learning dipole moments is much harder. The strength of the sophisticated descriptors lies in their ability to linearize structure-property relationships, to the point that a simple linear ridge regression performs just as well as the kernel-based machine-learning model for our small dicopper data set. The superior extrapolation performance of the simple descriptor is unique to exchange spin coupling, reinforcing the crucial role of choosing a suitable descriptor, and highlighting the interesting question of the role of chemical intuition vs. systematic or automated selection of features for machine learning in chemistry and material science.


2020 ◽  
Vol 20 (14) ◽  
pp. 1389-1402 ◽  
Author(s):  
Maja Zivkovic ◽  
Marko Zlatanovic ◽  
Nevena Zlatanovic ◽  
Mladjan Golubović ◽  
Aleksandar M. Veselinović

In recent years, one of the promising approaches in the QSAR modeling Monte Carlo optimization approach as conformation independent method, has emerged. Monte Carlo optimization has proven to be a valuable tool in chemoinformatics, and this review presents its application in drug discovery and design. In this review, the basic principles and important features of these methods are discussed as well as the advantages of conformation independent optimal descriptors developed from the molecular graph and the Simplified Molecular Input Line Entry System (SMILES) notation compared to commonly used descriptors in QSAR modeling. This review presents the summary of obtained results from Monte Carlo optimization-based QSAR modeling with the further addition of molecular docking studies applied for various pharmacologically important endpoints. SMILES notation based optimal descriptors, defined as molecular fragments, identified as main contributors to the increase/ decrease of biological activity, which are used further to design compounds with targeted activity based on computer calculation, are presented. In this mini-review, research papers in which molecular docking was applied as an additional method to design molecules to validate their activity further, are summarized. These papers present a very good correlation among results obtained from Monte Carlo optimization modeling and molecular docking studies.


2019 ◽  
Vol 19 (11) ◽  
pp. 944-956 ◽  
Author(s):  
Oscar Martínez-Santiago ◽  
Yovani Marrero-Ponce ◽  
Ricardo Vivas-Reyes ◽  
Mauricio E.O. Ugarriza ◽  
Elízabeth Hurtado-Rodríguez ◽  
...  

Background: Recently, some authors have defined new molecular descriptors (MDs) based on the use of the Graph Discrete Derivative, known as Graph Derivative Indices (GDI). This new approach about discrete derivatives over various elements from a graph takes as outset the formation of subgraphs. Previously, these definitions were extended into the chemical context (N-tuples) and interpreted in structural/physicalchemical terms as well as applied into the description of several endpoints, with good results. Objective: A generalization of GDIs using the definitions of Higher Order and Mixed Derivative for molecular graphs is proposed as a generalization of the previous works, allowing the generation of a new family of MDs. Methods: An extension of the previously defined GDIs is presented, and for this purpose, the concept of Higher Order Derivatives and Mixed Derivatives is introduced. These novel approaches to obtaining MDs based on the concepts of discrete derivatives (finite difference) of the molecular graphs use the elements of the hypermatrices conceived from 12 different ways (12 events) of fragmenting the molecular structures. The result of applying the higher order and mixed GDIs over any molecular structure allows finding Local Vertex Invariants (LOVIs) for atom-pairs, for atoms-pairs-pairs and so on. All new families of GDIs are implemented in a computational software denominated DIVATI (acronym for Discrete DeriVAtive Type Indices), a module of KeysFinder Framework in TOMOCOMD-CARDD system. Results: QSAR modeling of the biological activity (Log 1/K) of 31 steroids reveals that the GDIs obtained using the higher order and mixed GDIs approaches yield slightly higher performance compared to previously reported approaches based on the duplex, triplex and quadruplex matrix. In fact, the statistical parameters for models obtained with the higher-order and mixed GDI method are superior to those reported in the literature by using other 0-3D QSAR methods. Conclusion: It can be suggested that the higher-order and mixed GDIs, appear as a promissory tool in QSAR/QSPRs, similarity/dissimilarity analysis and virtual screening studies.


2020 ◽  
Vol 43 (1) ◽  
pp. 219-228
Author(s):  
Ghulam Dustigeer ◽  
Haidar Ali ◽  
Muhammad Imran Khan ◽  
Yu-Ming Chu

AbstractChemical graph theory is a branch of graph theory in which a chemical compound is presented with a simple graph called a molecular graph. There are atomic bonds in the chemistry of the chemical atomic graph and edges. The graph is connected when there is at least one connection between its vertices. The number that describes the topology of the graph is called the topological index. Cheminformatics is a new subject which is a combination of chemistry, mathematics and information science. It studies quantitative structure-activity (QSAR) and structure-property (QSPR) relationships that are used to predict the biological activities and properties of chemical compounds. We evaluated the second multiplicative Zagreb index, first and second universal Zagreb indices, first and second hyper Zagreb indices, sum and product connectivity indices for the planar octahedron network, triangular prism network, hex planar octahedron network, and give these indices closed analytical formulas.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1101
Author(s):  
Elena M. Tosca ◽  
Roberta Bartolucci ◽  
Paolo Magni

Machine learning (ML) approaches are receiving increasing attention from pharmaceutical companies and regulatory agencies, given their ability to mine knowledge from available data. In drug discovery, for example, they are employed in quantitative structure–property relationship (QSPR) models to predict biological properties from the chemical structure of a drug molecule. In this paper, following the Second Solubility Challenge (SC-2), a QSPR model based on artificial neural networks (ANNs) was built to predict the intrinsic solubility (logS0) of the 100-compound low-variance tight set and the 32-compound high-variance loose set provided by SC-2 as test datasets. First, a training dataset of 270 drug-like molecules with logS0 value experimentally determined was gathered from the literature. Then, a standard three-layer feed-forward neural network was defined by using 10 ChemGPS physico-chemical descriptors as input features. The developed ANN showed adequate predictive performances on both of the SC-2 test datasets. Benefits and limitations of ML approaches have been highlighted and discussed, starting from this case-study. The main findings confirmed that ML approaches are an attractive and promising tool to predict logS0; however, many aspects, such as data quality, molecular descriptor computation and selection, and assessment of applicability domain, are crucial but often neglected, and should be carefully considered to improve predictions based on ML.


Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2533 ◽  
Author(s):  
Mircea Vasile Diudea ◽  
Claudiu Nicolae Lungu ◽  
Csaba Levente Nagy

Rhombellanes represent a new class of structures, of which homeomorphs may be synthesized as real molecules. Cube-rhombellane is a double-shell structure, with vertices of degree 3 and 6, respectively. Several hypothetical structures/molecules were proposed and computed using molecular graph theory and coordination chemistry principles. Some geometries were optimized at the B3LYP/6-31G (d, p) level of theory, followed by harmonic vibrational frequency analysis at the same level of theory, single point data were collected in view of molecular stability evaluation. Some of the bioactive functionalized structures were also proposed and explored by molecular mechanics (MM)-based conformational analysis, to check their internal mobility. Drug-like properties of the proposed molecular structures were compared with some existing nano-molecules (fullerenes, nanotubes). ADME and other physico-chemical characteristics were computed using commercial software. Substructures of the proposed molecules, useful in a future synthesis, were provided by retro combinatorial synthesis (RECAP). Computational results obtained are promising regarding ADME properties, drug-likeness and nano-properties.


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2056
Author(s):  
Robert Reynolds ◽  
Allan Stauffer

A closed form expression for a triple integral not previously considered is derived, in terms of the Lerch function. Almost all Lerch functions have an asymmetrical zero-distribution. The kernel of the integral involves the product of the logarithmic, exponential, quotient radical, and polynomial functions. Special cases are derived in terms of fundamental constants; results are summarized in a table. All results in this work are new.


Author(s):  
Andrey A. Toropov ◽  
Alla P. Toropova ◽  
Emilio Benfenati ◽  
Orazio Nicolotti ◽  
Angelo Carotti ◽  
...  

In this chapter, the methodology of building up quantitative structure—property/activity relationships (QSPRs/QSARs)—by means of the CORAL software is described. The Monte Carlo method is the basis of this approach. Simplified Molecular Input-Line Entry System (SMILES) is used as the representation of the molecular structure. The conversion of SMILES into the molecular graph is available for QSPR/QSAR analysis using the CORAL software. The model for an endpoint is a mathematical function of the correlation weights for various features of the molecular structure. Hybrid models that are based on features extracted from both SMILES and a graph also can be built up by the CORAL software. The conceptually new ideas collected and revealed through the CORAL software are: (1) any QSPR/QSAR model is a random event; and (2) optimal descriptor can be a translator of eclectic information into an endpoint prediction.


Sign in / Sign up

Export Citation Format

Share Document