scholarly journals An Optimized Fingerprinting-Based Indoor Positioning with Kalman Filter and Universal Kriging for 5G Internet of Things

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Shuai Huang ◽  
Kun Zhao ◽  
Zhengqi Zheng ◽  
Wenqing Ji ◽  
Tianyi Li ◽  
...  

Fingerprinting technique for indoor positioning based on 5G system has attracted attention. Kalman filter (KF) is used as preprocessing of raw data to reduce the disturbance of Received Signal Strength (RSS) values. After preprocessing, Universal Kriging (UK) algorithm is adopted to reduce the efforts of establishing a fingerprinting database by Spatial Interpolation. A machine learning algorithm named K -Nearest Neighbour (KNN) is used to calculate user equipment’s position. Real experiments are setup with 5G signals over the air. Two indoor scenarios are considered depending whether the base station is located in the same room with user equipment or not. In test room A, the proposed KF and UK algorithms achieve 53% positioning accuracy improvement. In test room B, 43% performance improvement is obtained by the proposed algorithm. 1.44-meter positioning error is observed as the best case for 80% test samples.


2017 ◽  
Vol 13 (1) ◽  
pp. 155014771668697 ◽  
Author(s):  
Jichao Jiao ◽  
Zhongliang Deng

To achieve high accuracy in indoor positioning using a smartphone, there are two limitations: (1) limited computational and memory resources of the smartphone and (2) the human walking in large buildings. To address these issues, we propose a new feature descriptor by deeply combining histogram of oriented gradients and local phase quantization. This feature is a local phase quantization of a salient histogram of oriented gradient visualizing image, which is robust in indoor scenarios. Moreover, we introduce a base station–based indoor positioning system for assisting to reduce the image matching at runtime. The experimental results show that accurate and efficient indoor location positioning is achieved.



2019 ◽  
Vol 34 (3) ◽  
pp. 587-601 ◽  
Author(s):  
Alexander Samalot ◽  
Marina Astitha ◽  
Jaemo Yang ◽  
George Galanis

Abstract The scope of this study is to assess a combination of well-known techniques for bias reduction and spatial interpolation in an attempt to improve wind speed prediction for storms on a gridded domain. This is accomplished by implementing Kalman filter (KF) for bias reduction and universal kriging (UK) for spatial interpolation as postprocessing steps for the Weather Research and Forecasting (WRF) Model. It is shown that for surface wind speed, a linear KF is adequate for eliminating systematic model errors with the available storm history. KF-estimated wind speed biases at station locations are then interpolated across the model domain using UK. The combined KF–UK approach improves the wind speed forecast median bias by 55% and RMSE by 15% (bulk statistics), while benefits obtained at station-specific locations can reach maximum improvements of 72% for RMSE and 100% for bias. Contingency statistics that inform on model performance over four categories of wind speed magnitude reveal that calm/moderate winds are successfully corrected but strong/gale winds cannot be adequately corrected by the combination of KF and UK, which is a disadvantage for improving prediction of severe storm conditions.



Micromachines ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 79
Author(s):  
Jijun Geng ◽  
Linyuan Xia ◽  
Dongjin Wu

The demands for indoor positioning in location-based services (LBS) and applications grow rapidly. It is beneficial for indoor positioning to combine attitude and heading information. Accurate attitude and heading estimation based on magnetic, angular rate, and gravity (MARG) sensors of micro-electro-mechanical systems (MEMS) has received increasing attention due to its high availability and independence. This paper proposes a quaternion-based adaptive cubature Kalman filter (ACKF) algorithm to estimate the attitude and heading based on smart phone-embedded MARG sensors. In this algorithm, the fading memory weighted method and the limited memory weighted method are used to adaptively correct the statistical characteristics of the nonlinear system and reduce the estimation bias of the filter. The latest step data is used as the memory window data of the limited memory weighted method. Moreover, for restraining the divergence, the filter innovation sequence is used to rectify the noise covariance measurements and system. Besides, an adaptive factor based on prediction residual construction is used to overcome the filter model error and the influence of abnormal disturbance. In the static test, compared with the Sage-Husa cubature Kalman filter (SHCKF), cubature Kalman filter (CKF), and extended Kalman filter (EKF), the mean absolute errors (MAE) of the heading pitch and roll calculated by the proposed algorithm decreased by 4–18%, 14–29%, and 61–77% respectively. In the dynamic test, compared with the above three filters, the MAE of the heading reduced by 1–8%, 2–18%, and 2–21%, and the mean of location errors decreased by 9–22%, 19–31%, and 32–54% respectively by using the proposed algorithm for three participants. Generally, the proposed algorithm can effectively improve the accuracy of heading. Moreover, it can also improve the accuracy of attitude under quasistatic conditions.



2021 ◽  
Vol 11 (15) ◽  
pp. 6805
Author(s):  
Khaoula Mannay ◽  
Jesús Ureña ◽  
Álvaro Hernández ◽  
José M. Villadangos ◽  
Mohsen Machhout ◽  
...  

Indoor positioning systems have become a feasible solution for the current development of multiple location-based services and applications. They often consist of deploying a certain set of beacons in the environment to create a coverage volume, wherein some receivers, such as robots, drones or smart devices, can move while estimating their own position. Their final accuracy and performance mainly depend on several factors: the workspace size and its nature, the technologies involved (Wi-Fi, ultrasound, light, RF), etc. This work evaluates a 3D ultrasonic local positioning system (3D-ULPS) based on three independent ULPSs installed at specific positions to cover almost all the workspace and position mobile ultrasonic receivers in the environment. Because the proposal deals with numerous ultrasonic emitters, it is possible to determine different time differences of arrival (TDOA) between them and the receiver. In that context, the selection of a suitable fusion method to merge all this information into a final position estimate is a key aspect of the proposal. A linear Kalman filter (LKF) and an adaptive Kalman filter (AKF) are proposed in that regard for a loosely coupled approach, where the positions obtained from each ULPS are merged together. On the other hand, as a tightly coupled method, an extended Kalman filter (EKF) is also applied to merge the raw measurements from all the ULPSs into a final position estimate. Simulations and experimental tests were carried out and validated both approaches, thus providing average errors in the centimetre range for the EKF version, in contrast to errors up to the meter range from the independent (not merged) ULPSs.



2021 ◽  
Vol 10 (1) ◽  
pp. 21
Author(s):  
Omar Nassef ◽  
Toktam Mahmoodi ◽  
Foivos Michelinakis ◽  
Kashif Mahmood ◽  
Ahmed Elmokashfi

This paper presents a data driven framework for performance optimisation of Narrow-Band IoT user equipment. The proposed framework is an edge micro-service that suggests one-time configurations to user equipment communicating with a base station. Suggested configurations are delivered from a Configuration Advocate, to improve energy consumption, delay, throughput or a combination of those metrics, depending on the user-end device and the application. Reinforcement learning utilising gradient descent and genetic algorithm is adopted synchronously with machine and deep learning algorithms to predict the environmental states and suggest an optimal configuration. The results highlight the adaptability of the Deep Neural Network in the prediction of intermediary environmental states, additionally the results present superior performance of the genetic reinforcement learning algorithm regarding its performance optimisation.





Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7374
Author(s):  
João Manito ◽  
José Sanguino

With the increase in the widespread use of Global Navigation Satellite Systems (GNSS), increasing numbers of applications require precise position data. Of all the GNSS positioning methods, the most precise are those that are based in differential systems, such as Differential GNSS (DGNSS) and Real-Time Kinematics (RTK). However, for absolute positioning, the precision of these methods is tied to their reference position estimates. With the goal of quickly auto-surveying the position of a base station receiver, four positioning methods are analyzed and compared, namely Least Squares (LS), Weighted Least Squares (WLS), Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF), using only pseudorange measurements, as well as the Hatch Filter and position thresholding. The research results show that the EKF and UKF present much better mean errors than LS and WLS, with an attained precision below 1 m after about 4 h of auto-surveying. The methods that presented the best results are then tested against existing implementations, showing them to be very competitive, especially considering the differences between the used receivers. Finally, these results are used in a DGNSS test, which verifies a significant improvement in the position estimate as the base station position estimate improves.



2020 ◽  
Vol 9 (1) ◽  
pp. 1700-1704

Classification of target from a mixture of multiple target information is quite challenging. In This paper we have used supervised Machine learning algorithm namely Linear Regression to classify the received data which is a mixture of target-return with the noise and clutter. Target state is estimated from the classified data using Kalman filter. Linear Kalman filter with constant velocity model is used in this paper. Minimum Mean Square Error (MMSE) analysis is used to measure the performance of the estimated track at various Signal to Noise Ratio (SNR) levels. The results state that the error is high for Low SNR, for High SNR the error is Low



Sign in / Sign up

Export Citation Format

Share Document