scholarly journals A new Fe3O4/CuO/AC Nanocomposite for Imidacloprid Removal: Characterization, Optimization, and Adsorption Modeling

Author(s):  
Amrollah Parsaie ◽  
Nadereh Rahbar ◽  
Mohamadreza Baezat

Abstract A new magnetic adsorbent (Fe3O4/CuO/AC) composed of magnetite (Fe3O4) and copper oxide (CuO) nanoparticles Impregnated with activated carbon (AC) has been fabricated and used for the first time to remove imidacloprid (IMCP) insecticide from the aqueous solutions. This composite was characterized using field emission scanning electron microscopy, Fourier transform infrared spectroscopy, x-ray diffraction, energy dispersive x-ray diffraction, and vibrating sample magnetometer. The main influential factors such as the solution pH, the adsorbent amount, temperature, agitating time, and initial pesticide concentration were also tested to evaluate the optimized condition. Based on the results obtained from isotherm and kinetic modeling, the adsorption mechanism of IMCP on Fe3O4/CuO/AC is a combination of physisorption and chemisorption phenomena. The experimental data fitted best to the Freundlich isotherm model revealing the presence of heterogeneous sites for IMCP adsorption. Besides, the kinetics results revealed that the adsorption process well fitted with pseudo-second-order model, implying that the chemisorption was determining step in adsorption process. Thermodynamic results showed the spontaneous and exothermic nature of the adsorption process. Under optimal conditions (pH 7; contact time, 10 min; initial pesticide concentration, 10 mg L-1), IMCP removal efficiency was 99.6%, indicating the excellent ability of Fe3O4/CuO/AC nanocomposite for the adsorption of this pesticide from water solutions.

Minerals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 626 ◽  
Author(s):  
Salah ◽  
Gaber ◽  
Kandil

The sorption of uranium and thorium from their aqueous solutions by using 8-hydroxyquinoline modified Na-bentonite (HQ-bentonite) was investigated by the batch technique. Na-bentonite and HQ-bentonite were characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier Transform Infrared (FTIR) spectroscopy. Factors that influence the sorption of uranium and thorium onto HQ-bentonite such as solution pH, contact time, initial metal ions concentration, HQ-bentonite mass, and temperature were tested. Sorption experiments were expressed by Freundlich and Langmuir isotherms and the sorption results demonstrated that the sorption of uranium and thorium onto HQ-bentonite correlated better with the Langmuir isotherm than the Freundlich isotherm. Kinetics studies showed that the sorption followed the pseudo-second-order kinetic model. Thermodynamic parameters such as ΔH°, ΔS°, and ΔG° indicated that the sorption of uranium and thorium onto HQ-bentonite was endothermic, feasible, spontaneous, and physical in nature. The maximum adsorption capacities of HQ-bentonite were calculated from the Langmuir isotherm at 303 K and were found to be 63.90 and 65.44 for U(VI) and Th(IV) metal ions, respectively.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Hizkeal Tsade Kara ◽  
Sisay Tadesse Anshebo ◽  
Fedlu Kedir Sabir ◽  
Getachew Adam Workineh

The study was focused on the preparation and characterizations of sodium periodate-modified nanocellulose (NaIO4-NC) prepared from Eichhornia crassipes for the removal of cationic methylene blue (MB) dye from wastewater (WW). A chemical method was used for the preparation of NaIO4-NC. The prepared NaIO4-NC adsorbent was characterized by using X-ray diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscope (SEM), energy-dispersive X-ray (EDX), and Brunauer–Emmett–Teller (BET) instruments. Next, it was tested to the adsorption of MB dye from WW using batch experiments. The adsorption process was performed using Langmuir and Freundlich isotherm models with maximum adsorption efficiency (qmax) of 90.91 mg·g−1 and percent color removal of 78.1% at optimum 30 mg·L−1, 60 min., 1 g, and 8 values of initial concentration, contact time, adsorbent dose, and solution pH, respectively. Pseudo-second-order (PSO) kinetic model was well fitted for the adsorption of MB dye through the chemisorption process. The adsorption process was spontaneous and feasible from the thermodynamic study because the Gibbs free energy value was negative. After adsorption, the decreased values for physicochemical parameters of WW were observed in addition to the color removal. From the regeneration study, it is possible to conclude that NaIO4-NC adsorbent was recyclable and reused as MB dye adsorption for 13 successive cycles without significant efficient loss.


2020 ◽  
Vol 38 (9-10) ◽  
pp. 483-501
Author(s):  
Nguyen Thi Huong ◽  
Nguyen Ngoc Son ◽  
Vo Hoang Phuong ◽  
Cong Tien Dung ◽  
Pham Thi Mai Huong ◽  
...  

The Fe3O4/Talc nanocomposite was synthesized by the coprecipitation-ultrasonication method. The reaction was carried out under a inert gas environment. The nanoparticles were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), fourier-transform infrared spectroscopy (FT-IR) and vibrating sample magnetometry techniques (VSM), the surface area of the nanoparticles was determined to be 77.92 m2/g by Brunauer-Emmett-Teller method (BET). The kinetic data showed that the adsorption process fitted with the pseudo-second order model. Batch experiments were carried out to determine the adsorption kinetics and mechanisms of Cr(VI) by Fe3O4/Talc nanocomposite. The adsorption process was found to be highly pH-dependent, which made the material selectively adsorb these metals from aqueous solution. The isotherms of adsorption were also studied using Langmuir and Freundlich equations in linear forms. It is found that the Langmuir equation showed better linear correlation with the experimental data than the Freundlich. The thermodynamics of Cr(VI) adsorption onto the Fe3O4/Talc nanocomposite indicated that the adsorption was exothermic. The reusability study has proven that Fe3O4/Talc nanocomposite can be employed as a low-cost and easy to separate.


2010 ◽  
Vol 62 (8) ◽  
pp. 1888-1897 ◽  
Author(s):  
Nan Chen ◽  
Zhenya Zhang ◽  
Chuanping Feng ◽  
Miao Li ◽  
Rongzhi Chen ◽  
...  

Kanuma mud, a geomaterial, is used as an adsorbent for the removal of fluoride from water. The influences of contact time, solution pH, adsorbent dosage, initial fluoride concentration and co-existing ions were investigated by batch equilibration studies. The rate of adsorption was rapid with equilibrium being attained after about 2 h, and the maximum removal of fluoride was obtained at pH 5.0–8.0. The Freundlich isotherm model was found to represent the measured adsorption data well. The negative value of the thermodynamic parameter ΔG suggests the adsorption of fluoride by Kanuma mud was spontaneous, the endothermic nature of adsorption was confirmed by the positive ΔH value. The negative ΔS value for adsorbent denoted decreased randomness at the solid/liquid interface. The adsorption process using Kanuma mud followed the pseudo-second-order kinetic model. Fluoride uptake by the Kanuma mud was a complex process and intra-particle diffusion played a major role in the adsorption process. It was found that adsorbed fluoride could be easily desorbed by washing the adsorbent with a solution of pH 12. This indicates the material could be easily recycled.


2014 ◽  
Vol 805 ◽  
pp. 284-290
Author(s):  
José Vanderley do Nascimento Silva ◽  
Guilherme Costa de Oliveira ◽  
Meiry Gláucia Freire Rodrigues

As minimization process control pollution by heavy metals, adsorption can play an important environmental role. Therefore, many adsorbents can be used as effective alternatives. This work presents a study that aims to evaluate the removal of lead in liquid effluent through adsorption process using a finite bath system and with the adsorbent clay Chocobofe. The clay in its natural form was characterized by the techniques of X-Ray Diffraction (XRD), Cation Exchange Capacity (CEC), Chemical Analysis by X-Ray Spectrometry by Energy Dispersive (EDX), moreover, the natural clay was subjected to test adsorption capacity to analyze the behavior the same in certain organic solvents. Was performed to assess the effectiveness of the natural clay in the process of removal of Pb2+ present in solutions based on a factorial design 23 + 3 replicates at the central point, with the analysis variables solution pH (3.0, 4.0 and 5.0) and the initial concentration of lead (10, 30 and 50 ppm). The studies showed this material as promising in the removal of Pb2+ ions in synthetic wastewater and that the adsorption capacity showed that the organic solvents tested.


2022 ◽  
Author(s):  
Chuqing Yao ◽  
Yaodong Dai ◽  
Shuquan Chang ◽  
Haiqian Zhang

Abstract In this work, novel Prussian blue tetragonal nanorods were prepared by template-free solvothermal methods for removal of radionuclide Cs and Sr. It was worth that Prussian blue nanorods exhibited the better adsorption performance than co-precipitation PB or Prussian blue analogue composites. Thermodynamic analysis implied that adsorption process was spontaneous and endothermic which was described well with Langmuir isotherm and pseudo-second-order equation, the maximum adsorption capacity of PB nanorod was estimated to be 194.26 mg g-1 and 256.62 mg g-1 for Cs+ and Sr2+. The adsorption mechanism of Cs+ and Sr2+ was studied by X-ray photoelectron spectroscopy, X-ray diffraction and 57Fe Mössbaure spectroscopy, the results revealed that Cs+ entered in PB crystal to generate a new phase, the most of Sr2+ was trapped in internal crystal and the other exchanged Fe2+. Furthermore, the effect of co-existing ions and pH for PB adsorption process were also investigated. The results suggest that PB nanorods were outstanding candidate for removal of Cs+ and Sr2+ from radioactive wastewater.


2019 ◽  
Vol 9 (2) ◽  
pp. 102-115
Author(s):  
Hanane Essebaai ◽  
Ilham Ismi ◽  
Ahmed Lebkiri ◽  
Said Marzak ◽  
El Housseine Rifi

Highly efficient low-cost adsorbent was applied for copper (II) ions uptake from aqueous solution. Characteristics of natural adsorbent were established using scanning X-ray diffraction (XRD), X-ray fluorescence, electron microscope (SEM) and Fourier Transform Infra-Red (FTIR). Various physicochemical parameters such as contact time, initial copper(II) ions concentration, adsorbent dosage, pH of copper (II) ions solution and temperature were investigated. The result showed that the adsorption of copper (II) ions by natural clay was favorable at pH=5,5. The adsorption was found to increase with increase in initial copper (II) ions concentration, and contact time. Equilibrium adsorption data were fitted using three isotherms and kinetic data tested with four kinetic models. Freundlich isotherm best described the adsorption of copper (II) ions onto utilised clay, the maximum monolayer adsorption capacity (qmax) was 8 mg/g. Pseudo-second-order model best described the kinetics of the adsorption process. Thermodynamic parameters such as Gibbs free energy, enthalpy and entropy were determined. It was found that copper (II) ions adsorption was spontaneous (ΔG°<0) and endothermic (ΔH°>0).


Nanomaterials ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1112 ◽  
Author(s):  
Wenjuan Guo ◽  
Ahmad Umar ◽  
Yankai Du ◽  
Luyan Wang ◽  
Meishan Pei

Poly(2-(dimethylamino)ethyl methacrylate)-grafted bentonite, marked as Bent-PDMAEMA, was designed and prepared by a surface-initiated atom transfer radical polymerization method for the first time in this study. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermal gravimetric analysis (TGA) were applied to characterize the structure of Bent-PDMAEMA, which resulted in the successful synthesis of Bent-PDMAEMA. As a cationic adsorbent, the designed Bent-PDMAEMA was used to remove dye Orange I from wastewater. The adsorption property of Bent-PDMAEMA for Orange I dye was investigated under different experimental conditions, such as solution pH, initial dye concentration, contact time and temperature. Under the optimum conditions, the adsorption amount of Bent-PDMAEMA for Orange I dye could reach 700 mg·g−1, indicating the potential application of Bent-PDMAEMA for anionic dyes in the treatment of wastewater. Moreover, the experimental data fitted well with the Langmuir model. The adsorption process obeyed pseudo-second-order kinetic process mechanism.


2019 ◽  
Author(s):  
Chem Int

The objective of this study is to evaluate the performance and capacities of the bentonite of Maghnia, modified with benzyldimethyltetradecylammonium chloride, to remove the organic pollutant 2,4,6-Trichlorophenol (TCP). The modified sample was studied by X-ray diffraction (XRD) technique, infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA) methods. The best removal rate (99.52%) was obtained at 19°C, pH 4, solution concentration of 50 mg/L, stirring speed of 180 rpm and contact time of 60 min. The results were well fitted by both Langmuir and Freundlich isotherm models and the pseudo-second-order is the best model to describe the process.


2021 ◽  
Vol 8 (3) ◽  
pp. 234-241
Author(s):  
Paulina Taba ◽  
Mutmainnah Mutmainnah ◽  
Yusafir Hala

Mesoporous silica with cubic structure (MCM-48) was synthesized using Ludox HS40 as silica source and cetyltrimethylammonium bromide (CTAB) as a template. MCM-48 was used to adsorb the antibiotic of tetracycline hydrochloride. An X-ray diffractometer observed the x-ray diffraction pattern of MCM-48 and functional groups observed by a Fourier Transformed Infrared (FTIR) spectrometer. Parameters used to study adsorption were contact time and concentration. The pseudo-second-order was the kinetic order that fitted well with the adsorption of tetracycline HCl. The adsorption of tetracycline HCl on MCM-48 followed the Freundlich isotherm with the adsorption capacity of 0.98 mg/g.


Sign in / Sign up

Export Citation Format

Share Document