scholarly journals Simulation Analysis and Experimental Study of Piezoelectric Power Generation Device Based on Shape Memory Alloy Drive

Scanning ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-7
Author(s):  
Xiaochao Tian ◽  
Zhicong Wang ◽  
Sida Zhang ◽  
Shenfang Li ◽  
Jinlong Liu ◽  
...  

In order to solve the problem of waste heat collection from energy consumption, a thermal energy generation device combining shape memory alloy and piezoelectric materials has been designed. The shape memory alloy is heated and deformed to drive the drive wheel continuously, and the impact wheel is deformed against the piezoelectric cantilever beam during the rotation of the drive wheel to generate electricity. In this paper, the impact force generated by the impact wheel and the output voltage of the piezoelectric cantilever beam during the rotation process are given. Finally, the experimental test shows that the larger the radius of the drive wheel, the lower the impact force of the wheel and the lower the output voltage of the piezoelectric cantilever beam; the larger the diameter of the shape memory alloy wire, the higher the impact force of the wheel and the higher the output voltage of the piezoelectric cantilever beam; the more teeth of the drive wheel, the higher the impact frequency of the piezoelectric cantilever beam and the higher the output voltage. The maximum output voltage of the thermoelectric converter is 14.2 V, when the drive wheel radius is 13 mm, the shape memory alloy wire diameter is 1 mm and the number of impact wheel teeth is 6. The new structural design provides a new structural model for waste heat recovery and thermal energy generation technology. The new structural design provides a new approach and idea for waste heat recovery and thermal energy generation technology.

2013 ◽  
Vol 135 (11) ◽  
Author(s):  
Edwin Peraza-Hernandez ◽  
Darren Hartl ◽  
Edgar Galvan ◽  
Richard Malak

Origami engineering—the practice of creating useful three-dimensional structures through folding and fold-like operations on two-dimensional building-blocks—has the potential to impact several areas of design and manufacturing. In this article, we study a new concept for a self-folding system. It consists of an active, self-morphing laminate that includes two meshes of thermally-actuated shape memory alloy (SMA) wire separated by a compliant passive layer. The goal of this article is to analyze the folding behavior and examine key engineering tradeoffs associated with the proposed system. We consider the impact of several design variables including mesh wire thickness, mesh wire spacing, thickness of the insulating elastomer layer, and heating power. Response parameters of interest include effective folding angle, maximum von Mises stress in the SMA, maximum temperature in the SMA, maximum temperature in the elastomer, and radius of curvature at the fold line. We identify an optimized physical realization for maximizing folding capability under mechanical and thermal failure constraints. Furthermore, we conclude that the proposed self-folding system is capable of achieving folds of significant magnitude (as measured by the effective folding angle) as required to create useful 3D structures.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Carmen De Crescenzo ◽  
Despina Karatza ◽  
Dino Musmarra ◽  
Simeone Chianese ◽  
Theocharis Baxevanis ◽  
...  

This work aims at contributing to the development of a revolutionary technology based on shape memory alloy (SMA) coatings deposited on-site to large-scale metallic structural elements, which operate in extreme environmental conditions, such as steel bridges and buildings. The proposed technology will contribute to improve the integrity of metallic civil structures, to alter and control their mechanical properties by external stimuli, to contribute to the stiffness and rigidity of an elastic metallic structure, to safely withstand the expected loading conditions, and to provide corrosion protection. To prove the feasibility of the concept, investigations were carried out by depositing commercial NiTinol Ni50.8Ti (at.%) powder, onto stainless steel substrates by using high-velocity oxygen-fuel thermal spray technology. While the NiTinol has been known since decades, this intermetallic alloy, as well as no other alloy, was ever used as the SMA-coating material. Due to the influence of dynamics of spraying and the impact energy of the powder particles on the properties of thermally sprayed coatings, the effects of the main spray parameters, namely, spray distance, fuel-to-oxygen feed rate ratio, and coating thickness, on the quality and properties of the coating, in terms of hardness, adhesion, roughness, and microstructure, were investigated.


2011 ◽  
Vol 65 (5) ◽  
pp. 863-865 ◽  
Author(s):  
J. Aurrekoetxea ◽  
J. Zurbitu ◽  
I. Ortiz de Mendibil ◽  
A. Agirregomezkorta ◽  
M. Sánchez-Soto ◽  
...  

2013 ◽  
Vol 655-657 ◽  
pp. 823-829 ◽  
Author(s):  
Zhi Lin Ruan ◽  
Jun Jie Gong ◽  
Meng Chang Cai ◽  
Bing Huang

In order to solve the inconsistent problem of multi-layer connection and vibration in each layer, a butterfly piezoelectric generator with multilayer cantilever beams is designed. The generator is mainly constituted by butterfly multilayer cantilever beams and mass subassembly two parts. Physical devices of butterfly generator and typical piezoelectric cantilever are fabricated respectively. The experimental setup is also put up for the testing of resonant frequency and output voltage. It can be found that each layer of multilayer generator has a similar output voltage and resonant frequency to the typical one with same geometric and material parameters. So each layer in butterfly piezoelectric generator can be simplified as a typical cantilever beam for researching and analyzing.


2015 ◽  
Vol 754-755 ◽  
pp. 481-488
Author(s):  
Bibi Nadia Taib ◽  
Norhayati Sabani ◽  
Chan Buan Fei ◽  
Mazlee Mazalan ◽  
Mohd Azarulsani Md Azidin

Thin film piezoelectric material plays a vital role in micro-electromechanical systems (MEMS), due to its low power requirements and the availability of high energy harvesting. Zinc oxide is selected for piezoelectric material because of its high piezoelectric coupling coefficient, easy to deposit on silicon substrate and excellent adhesion. Deposited ZnO and Al improve the electrical properties, electrical conductivity and thermal stability. The design, fabrication and experimental test of fabricated MEMS piezoelectric cantilever beams operating in d33 mode were presented in this paper. PVD (Physical Vapor Deposition) was selected as the deposition method for aluminium while spincoating was chosen to deposit ZnO thin film. The piezoelectric cantilever beam is arranged with self-developed experimental setup consisting of DC motor and oscilloscope. Based on experimental result, the longer length of piezoelectric cantilever beam produce higher output voltage at oscilloscope. The piezoelectric cantilevers generated output voltages which were from 2.2 mV to 8.8 mV at 50 Hz operation frequency. One of four samples achieved in range of desired output voltage, 1-3 mV and the rest samples produced a higher output voltage. The output voltage is adequate for a very low power wireless sensing nodes as a substitute energy source to classic batteries.


2015 ◽  
Vol 799-800 ◽  
pp. 895-901
Author(s):  
Alias Mohd Noor ◽  
Rosnizam Che Puteh ◽  
Srithar Rajoo ◽  
Uday M. Basheer ◽  
Muhammad Hanafi Md Sah ◽  
...  

Exhaust gas heat utilization in the form of Thermal Energy Recovery (TER) has attracted a major interest due to its potentials with Internal Combustion Engines (ICE). Recovering useful energy, for example in the form of electrical power from the engine exhaust waste heat could benefit in the form of direct fuel economy or increase in the available electric power for the auxillary systems. The methodology in this paper includes the assessment of each waste heat recovery technology based on the current research and development trends for automotive application. It also looked into the potential for energy recovery, performances of each technology and factors affecting its implementation. Finally, the work presents an Electric Turbo Compounding (ETC) simulation using a Ford Eco-Boost as a baseline engine modeled with the 1-Dimensional AVL Boost software. A validated 1-D engine model was used to investigate the impact on the Brake Specific Fuel Consumption (BSFC) and Brake Mean Effective Pressure (BMEP) at full load. This paper presents some reviews on the turbo-compounding method and also the modelling efforts and results of an electric turbo-compounding system. Modelling shows that the turbo-compounding setup can be more beneficial than turbo-charging alone.


2020 ◽  
Vol 1 (01) ◽  
pp. 40-47
Author(s):  
Aissa Bouaissi ◽  
Nabaa S Radhi ◽  
Karrar F. Morad ◽  
Mohammad H. Hafiz ◽  
Alaa Abdulhasan Atiyah

Shape Memory Alloys (SMAs) are one of the most hopeful smart materials, especially, Nickel–Titanium (NiTi or Nitinol). These alloys are great and desirable due to their excellent reliability and behavior among all the commercially available alloys. In addition, strain recovery, (Ni–Ti) is granulated for a wide variety of medical uses because of its favorite properties such as fatigue behavior, corrosion resistance and biocompatibility. This paper explores the creation and the characterization of functionally graded (NiTi) materials. This work demonstrations the impact of Nickel contains changes on the characteristics of NiTi shape memory alloy, in order to obtain the suitable addition of Nickel contain, which gives the optimal balance between hardness, start and finish martensitic point, shape recovery and shape effect of alloys properties. These materials are prepared to obtain suddenly or gradually microstructure or composition differences inside the structure of one piece of material, the specimens made by powder metallurgy process and the influence of every layer of composite by; micro-hardness, transformation temperature DSC and shape effect. The hardness value and shape recovery decrease with increase nickel content. superior shape memory effect (SME) and shape recovery (SR) properties (i.e., 8.747, 10.270 for SMA-FGM1 SMA-FGM2 respectively, and SR is 1.735, 2.977 for SMA-FGM1 SMA-FGM2) respectively.  


Sign in / Sign up

Export Citation Format

Share Document