scholarly journals Dysregulation of Receptor for Advanced Glycation End Products (RAGE) Expression as a Biomarker of Keratoconus

2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Valentin Navel ◽  
Jean Malecaze ◽  
Corinne Belville ◽  
Héléna Choltus ◽  
Fanny Henrioux ◽  
...  

Background. Because of the implications of Receptor for Advanced Glycation End Products (RAGE) in keratoconus (KC), we describe a differential expression of RAGE transcripts and proteins in corneal tissues and tears of KC and healthy patients. Methods. Using a case-controlled study, corneal epitheliums and tears of KC and healthy subjects were obtained during corneal collagen cross-linking and photorefractive keratectomy (PKR) and during usual consultations. Quantitative reverse transcription (RT-qPCR) and Western-Blot were performed to analyze RAGE transcripts and proteins’ expression in corneal tissues and tears. Results. One hundred and six patients were included in this study. The characteristics of the patients were as follows: 56 KC (25 corneal epithelium and 31 tears) and 50 control subjects (25 corneal epithelium and 25 tears). Transcripts of RAGE, HMGB1, and S100 family ligands were quantified by RT-qPCR, identifying a significantly higher expression of RAGE and HMGB1 in the healthy group than in the KC group ( p = 0.03 and 0.04, respectively). Western Blot showed a significantly higher fl-RAGE expression in KC corneal epithelium than control ( p < 0.001 ) and lower s-RAGE expression in KC tears than control ( p = 0.04 ). Conclusions. Linked with the inflammatory process occurring in KC pathophysiology, we propose for the first time that the RAGE expression (total and truncated forms of receptor and ligands) in KC corneal tissues and tear samples provides viable biomarkers.

2021 ◽  
Vol 37 (1) ◽  
Author(s):  
Hyosin Baek ◽  
Soojin Jang ◽  
Jaehyun Park ◽  
Jimin Jang ◽  
Jooyeon Lee ◽  
...  

Abstract Background Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial lung disease. Despite alveolar epithelial cells is crucial role in lung, its contribution and the associated biomarker remain unknown in the pathogenesis of IPF. Recently, environmental factors including stone dust, silica and cigarette smoking were found as risk factors involved in IPF. Receptor for advanced glycation end products (RAGE) is a member of the immunoglobulin super family of cell surface receptors. It has been shown that interaction between RAGE and its ligands on immune cells mediates cellular migration and regulation of pro-inflammation. RAGE is highly expressed in the lung, in particular, alveolar epithelial cells. Therefore, we determined whether RAGE expression is associated with fibrosis-associated genes in patients with IPF and mice. Results When bleomycin (BLM) was intratracheally administered to C57BL/6 mice for 1, 2 weeks, macrophage and neutrophils were significantly increased. The fibrotic nodule formed and accumulation of collagen was determined after BLM injection in H&E- and Masson’s trichrome staining. Levels of elastin, Col1a1 and fibronectin were increased in quantitative real-time PCR and protein levels of α-SMA was increased in western blot analysis. In the lung tissues of 1 mg/kg BLM-induced mice, RAGE expression was gradually decreased in 1- and 2 weeks in immunohistochemistry and western blot analysis, and 3 mg/kg of BLM-induced mice exhibited decreased RAGE levels while α-SMA expression was increased. We next determined RAGE expression in the lungs of IPF patients using immunohistochemistry. As a result, RAGE expression was decreased, while α-SMA expression was increased compared with non-IPF subjects. Conclusions Our findings suggest that reduced RAGE was associated with increased fibrotic genes in BLM-induced mice and patients with IPF. Therefore, RAGE could be applied with a biomarker for prognosis and diagnosis in the pathogenesis of IPF.


2021 ◽  
Author(s):  
Kaiyu Han ◽  
Liyan Dou ◽  
Junwei Wang ◽  
Wenyu Wang ◽  
Hong Chen ◽  
...  

Abstract Background Several miRNAs are now known to have clear connections to the pathogenesis of asthma. The present study focused on the potential role of miR-3934 during asthma development. Methods The basophils was isolated from 50 asthmatic patients and 50 health controls. The expression level of miR-3934 was examined by RT-qPCR and the expression of receptor for advanced glycation end products (RAGE) was detected by western blot. In addition, the analysis of apoptotic basophils was performed by flow cytometry; the expression level of inflammatory cytokines was detected by ELISA kits; and several important proteins in TGF-β/Smad signaling were examined by western blot. Results miR-3934 was down-regulated in the basophils of asthmatic patients. The expression of the pro-inflammatory cytokines IL-6, IL-8 and IL-33 was enhanced in basophils from asthmatic patients, and this effect was partially reversed by transfection of miR-3934 mimics. Furthermore, receiver operating characteristics analysis showed that miR-3934 levels can be used to distinguish asthma patients from healthy individuals. miR-3934 partially inhibited advanced glycation end products-induced increases in basophil apoptosis by suppressing expression of RAGE. Conclusion Our results indicate that miR-3934 acts to mitigate the pathogenesis of asthma by targeting RAGE and suppressing TGF-β/Smad signaling.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chih-Pei Lin ◽  
Po-Hsun Huang ◽  
Chi-Yu Chen ◽  
Meng-Yu Wu ◽  
Jia-Shiong Chen ◽  
...  

AbstractDiabetes is a complex disease characterized by hyperglycemia, dyslipidemia, and insulin resistance. Plasma advanced glycation end products (AGEs) activated the receptor for advanced glycation end products (RAGE) and the activation of RAGE is implicated to be the pathogenesis of type 2 diabetic mellitus (T2DM) patient vascular complications. Sitagliptin, a dipeptidyl peptidase-4 (DPP4) inhibitor, is a new oral hypoglycemic agent for the treatment of T2DM. However, the beneficial effects on vascular calcification remain unclear. In this study, we used a high-fat diet (HFD)-fed low-density lipoprotein receptor deficiency (LDLR−/−) mice model to investigate the potential effects of sitagliptin on HFD-induced arterial calcification. Mice were randomly divided into 3 groups: (1) normal diet group, (2) HFD group and (3) HFD + sitagliptin group. After 24 weeks treatment, we collected the blood for chemistry parameters and DPP4 activity measurement, and harvested the aorta to evaluate calcification using immunohistochemistry and calcium content. To determine the effects of sitagliptin, tumor necrosis factor (TNF)-α combined with S100A12 was used to induce oxidative stress, activation of nicotinamide adenine dinucleotide phosphate (NADPH), up-regulation of bone markers and RAGE expression, and cell calcium deposition on human aortic smooth muscle cells (HASMCs). We found that sitagliptin effectively blunted the HFD-induced artery calcification and significantly lowered the levels of fasting serum glucose, triglyceride (TG), nitrotyrosine and TNF-α, decreased the calcium deposits, and reduced arterial calcification. In an in-vitro study, both S100A12 and TNF-α stimulated RAGE expression and cellular calcium deposits in HASMCs. The potency of S100A12 on HASMCs was amplified by the presence of TNF-α. Sitagliptin and Apocynin (APO), an NADPH oxidase inhibitor, inhibited the TNF-α + S100A12-induced NADPH oxidase and nuclear factor (NF)-κB activation, cellular oxidative stress, RAGE expression, osteo transcription factors expression and calcium deposition. In addition, treatment with sitagliptin, knockdown of RAGE or TNF-α receptor blunted the TNF-α + S100A12-induced RAGE expression. Our findings suggest that sitagliptin may suppress the initiation and progression of arterial calcification by inhibiting the activation of NADPH oxidase and NF-κB, followed by decreasing the expression of RAGE.


2010 ◽  
Vol 2010 ◽  
pp. 1-10 ◽  
Author(s):  
Taketoshi Noguchi ◽  
Toshiyuki Sado ◽  
Katsuhiko Naruse ◽  
Hiroshi Shigetomi ◽  
Akira Onogi ◽  
...  

Objective. Individuals with inflammation have a myriad of pregnancy aberrations including increasing their preterm birth risk. Toll-like receptors (TLRs) and receptor for advanced glycation end products (RAGE) and their ligands were all found to play a key role in inflammation. In the present study, we reviewed TLR and RAGE expression, their ligands, and signaling in preterm birth.Research Design and Methods. A systematic search was performed in the electronic databases PubMed and ScienceDirect up to July 2010, combining the keywords “preterm birth,” “TLR”, “RAGE”, “danger signal”, “alarmin”, “genomewide,” “microarray,” and “proteomics” with specific expression profiles of genes and proteins.Results. This paper provides data on TLR and RAGE levels and critical downstream signaling events including NF-kappaB-dependent proinflammatory cytokine expression in preterm birth. About half of the genes and proteins specifically present in preterm birth have the properties of endogenous ligands “alarmin” for receptor activation. The interactions between the TLR-mediated acute inflammation and RAGE-mediated chronic inflammation have clear implications for preterm birth via the TLR and RAGE system, which may be acting collectively.Conclusions. TLR and RAGE expression and their ligands, signaling, and functional activation are increased in preterm birth and may contribute to the proinflammatory state.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Citong Zhang ◽  
Wei Wei ◽  
Minghan Chi ◽  
Yao Wan ◽  
Xue Li ◽  
...  

Osteocyte plays an essential role in bone metabolism by regulating osteoblast and osteoclast activities. Dysfunction or apoptosis of osteocyte will severely endanger the bone homeostasis and result in bone diseases such as osteoporosis. Osteoporosis has been considered as one of the diabetes complications; however, the mechanism is still to be discovered. Advanced glycation end products (AGEs), as the main pathogenic factor of diabetes mellitus, have the capacity to induce osteocyte apoptosis thus sabotaging bone homeostasis. Here, we examined the role of AGE during osteocyte apoptosis and how this effect would affect osteocyte’s regulation of osteoblast and osteoclast. Mouse osteocyte-like MLO-Y4 cells were used to study the properties of osteocyte and to examine its biological and pathological function. MTT assay and Annexin V assay showed that AGE significantly induce MLO-Y4 cell apoptosis. qPCR and Western blot results have shown that AGE upregulates proapoptotic gene p53 and its downstream target gene Bax, which leads to enhanced activation of caspase-3, thus inducing apoptosis in MLO-Y4 cells. Increased expression of sclerostin and RANKL in osteocytes has shown that AGE induces osteocyte dysfunction thus severely damaging the bone homeostasis by decreasing osteoblast and increasing osteoclast activities. Furthermore, the role of the transcription factor FOXO1, which is intensely associated with apoptosis, has been determined. Western blot has shown that AGE significantly decreases Akt activities. Immunofluorescence has shown that AGE promotes FOXO1 nuclei localization and enhances FOXO1 expression. Silencing of FOXO1 suppressed AGE-enhanced apoptosis; mRNA and protein expressions of cleaved caspase-3, sclerostin, and RANKL were downregulated as well. Moreover, exogenous FOXO1 increased caspase-3 mRNA levels and caspase-3 transcriptional activity. Lastly, ChIP assay has established the capacity of FOXO1 binding directly on the caspase-3, sclerostin, and RANKL promoter region in AGE environment, providing the mechanism of the AGE-induced osteocyte apoptosis and dysfunction. Our results have shown that FOXO1 plays a crucial role in AGE-induced osteocyte dysfunction and apoptosis through its regulation of caspase-3, sclerostin, and RANKL. This study provides new insight into diabetes-enhanced risk of osteoporosis given the critical role of AGE in the pathogenesis of diabetes and the essential part of osteocyte in bone metabolism.


2020 ◽  
Vol 11 (6) ◽  
pp. 5486-5497
Author(s):  
Anusha Komati ◽  
Ajay Anand ◽  
Hussain Shaik ◽  
Mohana Krishna Reddy Mudiam ◽  
Katragadda Suresh Babu ◽  
...  

Non-enzymatic reactions between proteins and methylglyoxal (MG) result in the formation of advanced glycation end products (AGEs). Bombax ceiba calyx extract prevents the formation of AGEs.


Sign in / Sign up

Export Citation Format

Share Document