scholarly journals Evidence for Activation of Toll-Like Receptor and Receptor for Advanced Glycation End Products in Preterm Birth

2010 ◽  
Vol 2010 ◽  
pp. 1-10 ◽  
Author(s):  
Taketoshi Noguchi ◽  
Toshiyuki Sado ◽  
Katsuhiko Naruse ◽  
Hiroshi Shigetomi ◽  
Akira Onogi ◽  
...  

Objective. Individuals with inflammation have a myriad of pregnancy aberrations including increasing their preterm birth risk. Toll-like receptors (TLRs) and receptor for advanced glycation end products (RAGE) and their ligands were all found to play a key role in inflammation. In the present study, we reviewed TLR and RAGE expression, their ligands, and signaling in preterm birth.Research Design and Methods. A systematic search was performed in the electronic databases PubMed and ScienceDirect up to July 2010, combining the keywords “preterm birth,” “TLR”, “RAGE”, “danger signal”, “alarmin”, “genomewide,” “microarray,” and “proteomics” with specific expression profiles of genes and proteins.Results. This paper provides data on TLR and RAGE levels and critical downstream signaling events including NF-kappaB-dependent proinflammatory cytokine expression in preterm birth. About half of the genes and proteins specifically present in preterm birth have the properties of endogenous ligands “alarmin” for receptor activation. The interactions between the TLR-mediated acute inflammation and RAGE-mediated chronic inflammation have clear implications for preterm birth via the TLR and RAGE system, which may be acting collectively.Conclusions. TLR and RAGE expression and their ligands, signaling, and functional activation are increased in preterm birth and may contribute to the proinflammatory state.

2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Li-ping Wang ◽  
Jia-nan Geng ◽  
Bo Sun ◽  
Cheng-bo Sun ◽  
Yan Shi ◽  
...  

Purpose. The current study aims to examine the effects of advanced glycation end products (AGEs) on the microRNA (miRNA) expression profile in the kidney tissues of rats. Methods. Wistar rats were randomly divided into three equal experiment groups: the AGE group, the RSA group, and the control group. The rats in the AGE group and the RSA group were administered with advanced glycation end products (AGEs) and rat serum albumin (RSA) via the tail vein, respectively, whereas the control group received PBS. Total RNA was prepared from the rat kidney tissues, and the miRNA expression profiles in different experiment groups were compared by microarray analysis. The expression levels of selected differential miRNAs were verified by RT-qPCR. Target gene prediction was conducted using algorithms such as TargetScan, miRanda, and PICTar. Functional analysis was performed to determine the putative biological roles of the validated miRNAs. Results. The microarray study revealed 451 upregulated and 320 downregulated miRNAs in the AGE group compared with the RSA group (p<0.05). Seven miRNAs, including miR-21-5p, miR-92b-3p, miR-140-3p, miR-196a-5p, miR-181b-5p, miR-186-5p, and miR-192-5p, were screened and verified using RT-qPCR, of which, the change of miR-92b-3p was the most obvious according to the miRNA expression different multiple and p value. Furthermore, the expression trend of miR-92b-3p measured by RT-qPCR was shown to be consistent with the microarray results. Bioinformatics analysis and luciferase reporter assay identified Smad7 was a direct target of miR-92b-3p. Both immunohistochemical and western blotting showed that Smad7 expression was significantly suppressed in the kidney tissues from the AGE group compared with the control and RSA groups. Conclusion. The results of the current study suggested that miR-92b-3p could mediate AGE-induced development of renal abnormalities through targeting Smad7 in rats with DN.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chih-Pei Lin ◽  
Po-Hsun Huang ◽  
Chi-Yu Chen ◽  
Meng-Yu Wu ◽  
Jia-Shiong Chen ◽  
...  

AbstractDiabetes is a complex disease characterized by hyperglycemia, dyslipidemia, and insulin resistance. Plasma advanced glycation end products (AGEs) activated the receptor for advanced glycation end products (RAGE) and the activation of RAGE is implicated to be the pathogenesis of type 2 diabetic mellitus (T2DM) patient vascular complications. Sitagliptin, a dipeptidyl peptidase-4 (DPP4) inhibitor, is a new oral hypoglycemic agent for the treatment of T2DM. However, the beneficial effects on vascular calcification remain unclear. In this study, we used a high-fat diet (HFD)-fed low-density lipoprotein receptor deficiency (LDLR−/−) mice model to investigate the potential effects of sitagliptin on HFD-induced arterial calcification. Mice were randomly divided into 3 groups: (1) normal diet group, (2) HFD group and (3) HFD + sitagliptin group. After 24 weeks treatment, we collected the blood for chemistry parameters and DPP4 activity measurement, and harvested the aorta to evaluate calcification using immunohistochemistry and calcium content. To determine the effects of sitagliptin, tumor necrosis factor (TNF)-α combined with S100A12 was used to induce oxidative stress, activation of nicotinamide adenine dinucleotide phosphate (NADPH), up-regulation of bone markers and RAGE expression, and cell calcium deposition on human aortic smooth muscle cells (HASMCs). We found that sitagliptin effectively blunted the HFD-induced artery calcification and significantly lowered the levels of fasting serum glucose, triglyceride (TG), nitrotyrosine and TNF-α, decreased the calcium deposits, and reduced arterial calcification. In an in-vitro study, both S100A12 and TNF-α stimulated RAGE expression and cellular calcium deposits in HASMCs. The potency of S100A12 on HASMCs was amplified by the presence of TNF-α. Sitagliptin and Apocynin (APO), an NADPH oxidase inhibitor, inhibited the TNF-α + S100A12-induced NADPH oxidase and nuclear factor (NF)-κB activation, cellular oxidative stress, RAGE expression, osteo transcription factors expression and calcium deposition. In addition, treatment with sitagliptin, knockdown of RAGE or TNF-α receptor blunted the TNF-α + S100A12-induced RAGE expression. Our findings suggest that sitagliptin may suppress the initiation and progression of arterial calcification by inhibiting the activation of NADPH oxidase and NF-κB, followed by decreasing the expression of RAGE.


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Valentin Navel ◽  
Jean Malecaze ◽  
Corinne Belville ◽  
Héléna Choltus ◽  
Fanny Henrioux ◽  
...  

Background. Because of the implications of Receptor for Advanced Glycation End Products (RAGE) in keratoconus (KC), we describe a differential expression of RAGE transcripts and proteins in corneal tissues and tears of KC and healthy patients. Methods. Using a case-controlled study, corneal epitheliums and tears of KC and healthy subjects were obtained during corneal collagen cross-linking and photorefractive keratectomy (PKR) and during usual consultations. Quantitative reverse transcription (RT-qPCR) and Western-Blot were performed to analyze RAGE transcripts and proteins’ expression in corneal tissues and tears. Results. One hundred and six patients were included in this study. The characteristics of the patients were as follows: 56 KC (25 corneal epithelium and 31 tears) and 50 control subjects (25 corneal epithelium and 25 tears). Transcripts of RAGE, HMGB1, and S100 family ligands were quantified by RT-qPCR, identifying a significantly higher expression of RAGE and HMGB1 in the healthy group than in the KC group ( p = 0.03 and 0.04, respectively). Western Blot showed a significantly higher fl-RAGE expression in KC corneal epithelium than control ( p < 0.001 ) and lower s-RAGE expression in KC tears than control ( p = 0.04 ). Conclusions. Linked with the inflammatory process occurring in KC pathophysiology, we propose for the first time that the RAGE expression (total and truncated forms of receptor and ligands) in KC corneal tissues and tear samples provides viable biomarkers.


2020 ◽  
Vol 11 (6) ◽  
pp. 5486-5497
Author(s):  
Anusha Komati ◽  
Ajay Anand ◽  
Hussain Shaik ◽  
Mohana Krishna Reddy Mudiam ◽  
Katragadda Suresh Babu ◽  
...  

Non-enzymatic reactions between proteins and methylglyoxal (MG) result in the formation of advanced glycation end products (AGEs). Bombax ceiba calyx extract prevents the formation of AGEs.


2012 ◽  
Vol 25 (9) ◽  
pp. 1762-1768 ◽  
Author(s):  
Jamie A. Bastek ◽  
Amy G. Brown ◽  
Markley N. Foreman ◽  
Meghan A. McShea ◽  
Laura M. Anglim ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Elena Dozio ◽  
Elena Vianello ◽  
Francesco Bandera ◽  
Erika Longhi ◽  
Stefano Brizzola ◽  
...  

Most of the obesity-related complications are due to ectopic fat accumulation. Recently, the activation of the cell-surface receptor for advanced glycation end products (RAGE) has been associated with lipid accumulation in different organs. Nevertheless, the role of RAGE and sRAGE, the soluble form that prevents ligands to activate RAGE, in intramyocardial lipid accumulation is presently unknown. To this aim, we analyzed whether, in obesity, intramyocardial lipid accumulation and lipid metabolism-related transcriptome are related to RAGE and sRAGE. Heart and serum samples were collected from 10 lean (L) and 10 obese (OB) Zucker rats. Oil red staining was used to detect lipids on frozen heart sections. The lipid metabolism-related transcriptome (84 genes) was analyzed by a specific PCR array. Heart RAGE expression was explored by real-time RT-PCR and Western blot analyses. Serum levels of sRAGE (total and endogenous secretory form (esRAGE)) were quantified by ELISA. Genes promoting fatty acid transport, activation, and oxidation in mitochondria/peroxisomes were upregulated in OB hearts. Intramyocardial lipid content did not differ between OB and L rats, as well as RAGE expression. A slight increase in epicardial adipose tissue was observed in OB hearts. Total sRAGE and esRAGE concentrations were significantly higher in OB rats. sRAGE may protect against obesity-induced intramyocardial lipid accumulation by preventing RAGE hyperexpression, therefore allowing lipids to be metabolized. EAT also played a protective role by working as a buffering system that protects the myocardium against exposure to excessively high levels of fatty acids. These observations reinforce the potential role of RAGE pathway as an interesting therapeutic target for obesity-related complications, at least at the cardiovascular level.


Sign in / Sign up

Export Citation Format

Share Document