scholarly journals A Simplified Method for Predicting Tunneling-Induced Ground Movement considering Nonuniform Deformation Boundary

2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Xuepeng Zhang ◽  
Yujing Jiang ◽  
Yue Cai ◽  
Xin Li ◽  
Naser Golsanami ◽  
...  

Stochastic medium (SM) theory is a practical method in ground settlement prediction, while its nonintegrable double integral form makes the solution process complicated. A simplified analytical solution based on the SM theory is developed to predict the ground movement in tunneling excavation. With the simplified solution, the ground movement for single tunnel and twin tunnels could be predicted based on the gap parameter G and influence angle β. A feasible approach is developed to estimate these two parameters using the maximum ground settlement Smax and tunnel design parameters, including tunnel depth H and diameter R. The proposed approach can be used to predict the ground movement curve for both circular and noncircular cross section tunnels. To validate its accuracy, the results predicted by the simplified procedure are compared with those obtained by the SM theory and measured in situ. The comparisons show that the current results agree well with those obtained by the SM theory and measured in situ. The comparison of five tunnels in literature illustrates that the simplified method can provide a more reasonable prediction for the ground movement induced by tunneling.

2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Meng Fei ◽  
Wu Li-chun ◽  
Zhang Jia-sheng ◽  
Deng Guo-dong ◽  
Ni Zhi-hui

In order to calculate the ground movement induced by displacement piles driven into horizontal layered strata, an axisymmetric model was built and then the vertical and horizontal ground movement functions were deduced using stochastic medium theory. Results show that the vertical ground movement obeys normal distribution function, while the horizontal ground movement is an exponential function. Utilizing field measured data, parameters of these functions can be obtained by back analysis, and an example was employed to verify this model. Result shows that stochastic medium theory is suitable for calculating the ground movement in pile driving, and there is no need to consider the constitutive model of soil or contact between pile and soil. This method is applicable in practice.


2013 ◽  
Vol 50 (7) ◽  
pp. 793-800 ◽  
Author(s):  
Edgar Giovanny Diaz-Segura

The range of variation of the bearing capacity factor, Nγ, was assessed using 60 estimation methods for rough footings on sand subjected to static vertical loading. The influence on the Nγ values of the use of correlations for the estimation of the friction angle, [Formula: see text], derived from in situ tests was also assessed. The analysis shows a marked dependency on the methods used to determine Nγ, showing differences for the same [Formula: see text] values of up to 267% between estimated values. Uncertainty in the estimation of [Formula: see text], due to the use of correlations with in situ tests, leads to a range of variation for Nγ higher than that seen using the 60 estimation methods. Finally, given the regular use of the in situ standard penetration test (SPT) on sands, and based on a series of analyses using finite elements, a simplified method in terms of the SPT N-values is proposed for estimation of Nγ in footings on sands.


Author(s):  
Khaled A. Galal ◽  
Ghassan R. Chehab

One of the Indiana Department of Transportation's (INDOT's) strategic goals is to improve its pavement design procedures. This goal can be accomplished by fully implementing the 2002 mechanistic–empirical (M-E) pavement design guide (M-E PDG) once it is approved by AASHTO. The release of the M-E PDG software has provided a unique opportunity for INDOT engineers to evaluate, calibrate, and validate the new M-E design process. A continuously reinforced concrete pavement on I-65 was rubblized and overlaid with a 13–in.-thick hot-mix asphalt overlay in 1994. The availability of the structural design, material properties, and climatic and traffic conditions, in addition to the availability of performance data, provided a unique opportunity for comparing the predicted performance of this section using the M-E procedure with the in situ performance; calibration efforts were conducted subsequently. The 1993 design of this pavement section was compared with the 2002 M-E design, and performance was predicted with the same design inputs. In addition, design levels and inputs were varied to achieve the following: ( a) assess the functionality of the M-E PDG software and the feasibility of applying M-E design concepts for structural pavement design of Indiana roadways, ( b) determine the sensitivity of the design parameters and the input levels most critical to the M-E PDG predicted distresses and their impact on the implementation strategy that would be recommended to INDOT, and ( c) evaluate the rubblization technique that was implemented on the I-65 pavement section.


2018 ◽  
Vol 36 (4) ◽  
pp. 361-372 ◽  
Author(s):  
Afshin Khoshand ◽  
Ali Fathi ◽  
Milad Zoghi ◽  
Hamidreza Kamalan

One of the most common and economical methods for waste disposal is landfilling. The landfill cover system is one of the main components of landfills which prevents waste exposure to the environment by creating a barrier between the waste and the surrounding environment. The stability and integrity of the landfill cover system is a fundamental part of the design, construction, and maintenance of landfills. A reinforced tapered landfill cover system can be considered as a practical method for improving its stability; however, the simultaneous effects of seismic and seepage forces in the reinforced tapered landfill cover system have not been studied. The current paper provides a solution based on the limit equilibrium method in order to evaluate the stability of a reinforced tapered landfill cover system under seismic and seepage (both horizontal and parallel seepage force patterns) loading conditions. The proposed analytical approach is applied to different design cases through parametric study and the obtained results are compared to those derived from literature. Parametric study is performed to illustrate the sensitivity of the safety factor (FS) to the different design parameters. The obtained results reveal that parameters which describe the geometry have limited effects on the stability of the landfill cover system in comparison to the rest of the studied design parameters. Moreover, the comparisons between the derived results and available methods demonstrate good agreement between obtained findings with those reported in the literature.


Author(s):  
Jun Kyung Park ◽  
Dong Hwan Cho ◽  
Sharif Hossain ◽  
Jeongho Oh

Various empirical equations have been proposed to predict the ground settlement profile caused by the excavation of conventional circular tunnels. However, ground movement for the underground box structure has not been fully studied. In this study, ground settlement induced by underground box installations is investigated using two-dimensional finite element analyses. A new formulation to assess the settlement profile applicable to underground box structure is proposed based on parametric analyses of the changes in ground condition, geometric condition of structure, and construction conditions. This paper also presents a method to predict the maximum surface settlement around an underground box structure with artificial neural networks (ANNs), taking into account nine input variables that have direct physical significance. A MATLAB-based multi-layer back propagation neural network model is developed, trained, and tested with parameters obtained from numerical analyses. The maximum settlement from the ANN model, in conjunction with a new formulation to construct the settlement profile, turns out to be promising, by predicting a settlement profile compatible with field measurement data.


Geosciences ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 518
Author(s):  
Babar Khan ◽  
Syed Muhammad Jamil ◽  
Jung Joo Kim ◽  
Turab H. Jafri ◽  
Jonguk Kim

To accommodate traffic volume on roads due to ever-increasing population growth, the widening of highways and motorways is in high demand. Nevertheless, the widening of tunnels on these road networks is quite complex due to the presence of numerous rock types, in situ stress, and different widening modes. To overcome these complexities, eight different tunnel shapes were simulated under varying support conditions for asymmetric and symmetric widening. It was found that the tunnels with a round shape, such as horseshoe and semicircular with flatbed, are more effective for asymmetric widening, whereas the provision of a rounded invert in these shapes can reverse the widening option to symmetric. Furthermore, an insignificant effect of the difference in asymmetric and symmetric widening of regular tunnel shapes, such as box, rectangular, and semi-elliptical, was found. A full factorial design statistical analysis confirmed the decrease in tunnel deformation by using various tunnel support systems and showed a significant deformation difference according to monitoring locations at the tunnel periphery. The deformation difference in the case of both tunnel widening modes was also analyzed according to different design parameters. This study provides a comprehensive understanding of rock mass behavior when the widening of any underground opening is carried out.


2019 ◽  
Vol 9 (20) ◽  
pp. 4243 ◽  
Author(s):  
Ja-Yeon Kim ◽  
Yoo-Hyun Cho ◽  
Hyun-Sun Park ◽  
Jae-Hyun Ryou ◽  
Min-Ki Kwon

A much simplified method for transferring Gallium nitride (GaN) light emitting didoes (LEDs) to an unusual substrate, such as glass, Si, polyethylene terephthalate, or polyurethane, was demonstrated with spontaneously formed vertical tethers during chemical lift-off (CLO), without requiring a sacrificial layer or extra process steps. The LED arrays resided on a stamp that was coated with an adhesive layer. After the layer with the LEDs was transferred to the new substrates, the stamp was removed by acetone to complete the preparation. Over 3 × 3 cm2 LED arrays transferred to various substrates without any damage and misorientation. We also found that the optical and electrical characteristics improved after transfer due to decease in built-in stress. This simple and practical method is expected to greatly facilitate the development of transferrable full color GaN microLEDs on various substrates with either greatly reduced or no damage.


1991 ◽  
Vol 28 (2) ◽  
pp. 226-238 ◽  
Author(s):  
F. Pelli ◽  
P. K. Kaiser ◽  
N. R. Morgenstern

Convergence, radial displacements, and stress changes are often recorded during the advance of a tunnel for the observational tunnel design approach. In deep tunnels, instruments must be installed from underground and can seldom be placed in undisturbed ground. Consequently, observations are only partial records of the total change induced by an excavation and the influence of the three-dimensional state near the face must be considered. This paper presents results from numerical simulations to assess face effects on monitoring data. The influence of such aspects as in situ state of stress, anisotropy, nonlinearity, and plasticity (yielding ground) are evaluated. Guidelines for underground monitoring of deformations are given. Key words: tunnelling, monitoring, back-analysis, convergence, extensometers, numerical modelling.


Sign in / Sign up

Export Citation Format

Share Document