scholarly journals Mass Transfer of Microscale Light-Emitting Diodes to Unusual Substrates by Spontaneously Formed Vertical Tethers During Chemical Lift-Off

2019 ◽  
Vol 9 (20) ◽  
pp. 4243 ◽  
Author(s):  
Ja-Yeon Kim ◽  
Yoo-Hyun Cho ◽  
Hyun-Sun Park ◽  
Jae-Hyun Ryou ◽  
Min-Ki Kwon

A much simplified method for transferring Gallium nitride (GaN) light emitting didoes (LEDs) to an unusual substrate, such as glass, Si, polyethylene terephthalate, or polyurethane, was demonstrated with spontaneously formed vertical tethers during chemical lift-off (CLO), without requiring a sacrificial layer or extra process steps. The LED arrays resided on a stamp that was coated with an adhesive layer. After the layer with the LEDs was transferred to the new substrates, the stamp was removed by acetone to complete the preparation. Over 3 × 3 cm2 LED arrays transferred to various substrates without any damage and misorientation. We also found that the optical and electrical characteristics improved after transfer due to decease in built-in stress. This simple and practical method is expected to greatly facilitate the development of transferrable full color GaN microLEDs on various substrates with either greatly reduced or no damage.

Author(s):  
David Jui-Yang Feng ◽  
Heng Kuo ◽  
Cheng-Fu Yang

The epitaxial lift-off (ELO) process based on selectively etching a thin sacrificial AlAs layer from GaAs substrate was performed using high-concentrated aqueous hydrofluoric (HF) etchant. However, because of using the wet etching method, the traditional ELO process has many drawbacks and limitations. Supercritical fluids (SCFs) naturally have the characteristics of low viscosity, high diffusivity, and zero surface tension. Therefore, the development of a gas-phase-like dry etching method based on mixing HF into CO2 and operating the mixture of HF/CO2 in SCFs condition as etchant is hereby proposed to overcome those bottlenecks existing in traditional wet ELO processes. However, there are no available experimental results for etching AlAs layers by HF in SCFs yet. Therefore, a HF-compatible corrosion-resistant high-pressure system was designed and built up to perform the idea. The capabilities of etching sample in supercritical CO2 (scCO2) had been systemically investigated under various pressures (2000–3000 psi) and temperatures (40–60[Formula: see text]C). Besides, the etching performances separately conducted by using aqueous-HF and anhydrous HF/Pyridine as the source etchant and mixing with scCO2 at a fixed temperature, pressure and etching time were also examined and compared under different equivalent HF concentrations. An evaluation of using acetone as the co-solvent mixed with HF/scCO2 mixture for enhancing the etch rate in different volume ratio of HF/co-solvent was further investigated and discussed. With this system, we demonstrate releasing a size of [Formula: see text] (width × length) and 3 [Formula: see text]m-thick free-standing GaAs sheet from a 150 nm AlAs sacrificial layer by the etching sample in HF/scCO2 mixture. The released GaAs sheet was also successfully transferred to a flexible PET substrate by using a PDMS stamp and an adhesive layer of NOA61.


2012 ◽  
Vol 45 (7) ◽  
pp. 35-37
Author(s):  
C.-T. Pan ◽  
K.-C. Shen ◽  
D.-S. Wuu ◽  
H.-H. Hsueh ◽  
R.-H. Horng

2020 ◽  
Author(s):  
Pengbo Han ◽  
Zeng Xu ◽  
Chengwei Lin ◽  
Dongge Ma ◽  
Anjun Qin ◽  
...  

Deep blue organic-emitting fluorophores are crucial for application in white lighting and full color flat-panel displays but emitters with high color quality and efficiency are rare. Herein, novel deep blue AIE luminogens (AIEgens) with various donor units and an acceptor of cyano substituted tetraphenylbenzene (TPB) cores were developed and used to fabricate non-doped deep blue and hybrid white organic light-emitting diodes (OLEDs). Benefiting from its high emission efficiency and high proportion of horizontally oriented dipoles in the film state, the non-doped deep blue device based on CN-TPB-TPA realized a maximum external quantum efficiency 7.27%, with a low efficiency roll-off and CIE coordinates of (0.15, 0.08). Moreover, efficient two-color hybrid warm white OLEDs (CIE<sub>x,y</sub> = 0.43, 0.45) were achieved using CN-TPB-TPA as the blue-emitting layer and phosphor doped host, which realized maximum current, power, external quantum efficiencies 58.0 cd A<sup>-1</sup>, 60.7 lm W<sup>-1</sup> and 19.1%, respectively. This work provides a general strategy to achieve high performance, stable deep blue and hybrid white OLEDs by construction of AIEgens with excellent horizontal orientation


Nano Research ◽  
2021 ◽  
Author(s):  
Emma N. Welbourne ◽  
Tarun Vemulkar ◽  
Russell P. Cowburn

AbstractSynthetic antiferromagnetic (SAF) particles with perpendicular anisotropy display a number of desirable characteristics for applications in biological and other fluid environments. We present an efficient and effective method for the patterning of ultrathin Ruderman-Kittel-Kasuya-Yoshida coupled, perpendicularly magnetised SAFs using a combination of nanosphere lithography and ion milling. A Ge sacrificial layer is utilised, which provides a clean and simple lift-off process, as well as maintaining the key magnetic properties that are beneficial to target applications. We demonstrate that the method is capable of producing a particularly high yield of well-defined, thin film based nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document