scholarly journals Feature Extraction of Ship Radiation Signals Based on Wavelet Packet Decomposition and Energy Entropy

2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Yuxing Li ◽  
Feiyue Ning ◽  
Xinru Jiang ◽  
Yingmin Yi

The analysis of ship radiation signals to identify ships is an important research content of underwater acoustic signal processing. The traditional fast Fourier transform (FFT) is not suitable for analyzing non-stationary, non-Gaussian, and nonlinear signal processing. In order to realize the feature extraction and accurate classification of ship radiation signals with higher accuracy, a feature extraction method of ship radiation signals based on wavelet packet decomposition and energy entropy is proposed in this paper. According to wavelet packet decomposition, the ship radiation signal is decomposed into different frequency bands, and its energy entropy feature is extracted. As for comparisons, the center frequency and permutation entropy are also used as features to be extracted, then the k-nearest neighbor is applied to classify and recognize the extracted results. Based on the comparisons of wavelet packet decomposition, the center frequency, permutation entropy, and the k-nearest neighbor are used for classification and recognition. The experimental results present that, when comparing with center frequency and permutation entropy, the method based on energy entropy has the best availability, with the highest average recognition rate for four types of ship radiation signals, up to 98%.

2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Yuxing Li ◽  
Shangbin Jiao ◽  
Bo Geng ◽  
Xinru Jiang

Dispersion entropy (DE), as a newly proposed entropy, has achieved remarkable results in its application. In this paper, on the basis of DE, combined with coarse-grained processing, we introduce the fluctuation and distance information of signal and propose the refined composite multiscale fluctuation-based reverse dispersion entropy (RCMFRDE). As an emerging complexity analysis mode, RCMFRDE has been used for the first time for the feature extraction of ship-radiated noise signals to mitigate the loss caused by the misclassification of ships on the ocean. Meanwhile, a classification and recognition method combined with K-nearest neighbor (KNN) came into being, namely, RCMFRDE-KNN. The experimental results indicated that RCMFRDE has the highest recognition rate in the single feature case and up to 100% in the double feature case, far better than multiscale DE (MDE), multiscale fluctuation-based DE (MFDE), multiscale permutation entropy (MPE), and multiscale reverse dispersion entropy (MRDE), and all the experimental results show that the RCMFRDE proposed in this paper improves the separability of the commonly used entropy in the hydroacoustic domain.


Entropy ◽  
2021 ◽  
Vol 24 (1) ◽  
pp. 22
Author(s):  
Yuxing Li ◽  
Peiyuan Gao ◽  
Bingzhao Tang ◽  
Yingmin Yi ◽  
Jianjun Zhang

In order to accurately identify various types of ships and develop coastal defenses, a single feature extraction method based on slope entropy (SlEn) and a double feature extraction method based on SlEn combined with permutation entropy (SlEn&PE) are proposed. Firstly, SlEn is used for the feature extraction of ship-radiated noise signal (SNS) compared with permutation entropy (PE), dispersion entropy (DE), fluctuation dispersion entropy (FDE), and reverse dispersion entropy (RDE), so that the effectiveness of SlEn is verified, and SlEn has the highest recognition rate calculated by the k-Nearest Neighbor (KNN) algorithm. Secondly, SlEn is combined with PE, DE, FDE, and RDE, respectively, to extract the feature of SNS for a higher recognition rate, and SlEn&PE has the highest recognition rate after the calculation of the KNN algorithm. Lastly, the recognition rates of SlEn and SlEn&PE are compared, and the recognition rates of SlEn&PE are higher than SlEn by 4.22%. Therefore, the double feature extraction method proposed in this paper is more effective in the application of ship type recognition.


Author(s):  
Alia Karim Abdul Hassan ◽  
Bashar Saadoon Mahdi ◽  
Asmaa Abdullah Mohammed

In a writer recognition system, the system performs a “one-to-many” search in a large database with handwriting samples of known authors and returns a possible candidate list. This paper proposes method for writer identification handwritten Arabic word without segmentation to sub letters based on feature extraction speed up robust feature transform (SURF) and K nearest neighbor classification (KNN) to enhance the writer's  identification accuracy. After feature extraction, it can be cluster by K-means algorithm to standardize the number of features. The feature extraction and feature clustering called to gather Bag of Word (BOW); it converts arbitrary number of image feature to uniform length feature vector. The proposed method experimented using (IFN/ENIT) database. The recognition rate of experiment result is (96.666).


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Shan Guan ◽  
Kai Zhao ◽  
Shuning Yang

This paper proposes a novel classification framework and a novel data reduction method to distinguish multiclass motor imagery (MI) electroencephalography (EEG) for brain computer interface (BCI) based on the manifold of covariance matrices in a Riemannian perspective. For method 1, a subject-specific decision tree (SSDT) framework with filter geodesic minimum distance to Riemannian mean (FGMDRM) is designed to identify MI tasks and reduce the classification error in the nonseparable region of FGMDRM. Method 2 includes a feature extraction algorithm and a classification algorithm. The feature extraction algorithm combines semisupervised joint mutual information (semi-JMI) with general discriminate analysis (GDA), namely, SJGDA, to reduce the dimension of vectors in the Riemannian tangent plane. And the classification algorithm replaces the FGMDRM in method 1 with k-nearest neighbor (KNN), named SSDT-KNN. By applying method 2 on BCI competition IV dataset 2a, the kappa value has been improved from 0.57 to 0.607 compared to the winner of dataset 2a. And method 2 also obtains high recognition rate on the other two datasets.


2009 ◽  
Vol 131 (6) ◽  
Author(s):  
Yaguo Lei ◽  
Zhengjia He ◽  
Yanyang Zi

This paper presents a new method for fault diagnosis of rolling element bearings, which is developed based on a combination of weighted K nearest neighbor (WKNN) classifiers. This method uses wavelet packet transform based on the lifting scheme to preprocess the vibration signals before feature extraction. Time- and frequency-domain features are all extracted to represent the operation conditions of the bearings totally. Sensitive features are selected after feature extraction. And then, multiple classifiers based on WKNN are combined to overcome the two disadvantages of KNN and therefore it may enhance the classification accuracy. The experimental results of the proposed method to fault diagnosis of the rolling element bearings show that this method enables the detection of abnormalities in bearings and at the same time identification of fault categories and levels.


2018 ◽  
Author(s):  
I Wayan Agus Surya Darma

Balinese character recognition is a technique to recognize feature or pattern of Balinese character. Feature of Balinese character is generated through feature extraction process. This research using handwritten Balinese character. Feature extraction is a process to obtain the feature of character. In this research, feature extraction process generated semantic and direction feature of handwritten Balinese character. Recognition is using K-Nearest Neighbor algorithm to recognize 81 handwritten Balinese character. The feature of Balinese character images tester are compared with reference features. Result of the recognition system with K=3 and reference=10 is achieved a success rate of 97,53%.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1274
Author(s):  
Daniel Bonet-Solà ◽  
Rosa Ma Alsina-Pagès

Acoustic event detection and analysis has been widely developed in the last few years for its valuable application in monitoring elderly or dependant people, for surveillance issues, for multimedia retrieval, or even for biodiversity metrics in natural environments. For this purpose, sound source identification is a key issue to give a smart technological answer to all the aforementioned applications. Diverse types of sounds and variate environments, together with a number of challenges in terms of application, widen the choice of artificial intelligence algorithm proposal. This paper presents a comparative study on combining several feature extraction algorithms (Mel Frequency Cepstrum Coefficients (MFCC), Gammatone Cepstrum Coefficients (GTCC), and Narrow Band (NB)) with a group of machine learning algorithms (k-Nearest Neighbor (kNN), Neural Networks (NN), and Gaussian Mixture Model (GMM)), tested over five different acoustic environments. This work has the goal of detailing a best practice method and evaluate the reliability of this general-purpose algorithm for all the classes. Preliminary results show that most of the combinations of feature extraction and machine learning present acceptable results in most of the described corpora. Nevertheless, there is a combination that outperforms the others: the use of GTCC together with kNN, and its results are further analyzed for all the corpora.


2015 ◽  
Vol 13 (2) ◽  
pp. 50-58
Author(s):  
R. Khadim ◽  
R. El Ayachi ◽  
Mohamed Fakir

This paper focuses on the recognition of 3D objects using 2D attributes. In order to increase the recognition rate, the present an hybridization of three approaches to calculate the attributes of color image, this hybridization based on the combination of Zernike moments, Gist descriptors and color descriptor (statistical moments). In the classification phase, three methods are adopted: Neural Network (NN), Support Vector Machine (SVM), and k-nearest neighbor (KNN). The database COIL-100 is used in the experimental results.


Sign in / Sign up

Export Citation Format

Share Document