scholarly journals Integrative Analysis of Cyclin Protein Levels Identifies Cyclin B1 as a Classifier and Predictor of Outcomes in Breast Cancer

2009 ◽  
Vol 15 (11) ◽  
pp. 3654-3662 ◽  
Author(s):  
Roshan Agarwal ◽  
Ana-Maria Gonzalez-Angulo ◽  
Simen Myhre ◽  
Mark Carey ◽  
Ju-Seog Lee ◽  
...  
2005 ◽  
Vol 127 (04) ◽  
Author(s):  
J Yuan ◽  
I Androic ◽  
A Kraemer ◽  
M Kaufmann ◽  
K Strebhardt

Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 623
Author(s):  
Marit Rasmussen ◽  
Susanna Tan ◽  
Venkata S. Somisetty ◽  
David Hutin ◽  
Ninni Elise Olafsen ◽  
...  

ADP-ribosylation is a post-translational protein modification catalyzed by a family of proteins known as poly-ADP-ribose polymerases. PARP7 (TIPARP; ARTD14) is a mono-ADP-ribosyltransferase involved in several cellular processes, including responses to hypoxia, innate immunity and regulation of nuclear receptors. Since previous studies suggested that PARP7 was regulated by 17β-estradiol, we investigated whether PARP7 regulates estrogen receptor α signaling. We confirmed the 17β-estradiol-dependent increases of PARP7 mRNA and protein levels in MCF-7 cells, and observed recruitment of estrogen receptor α to the promoter of PARP7. Overexpression of PARP7 decreased ligand-dependent estrogen receptor α signaling, while treatment of PARP7 knockout MCF-7 cells with 17β-estradiol resulted in increased expression of and recruitment to estrogen receptor α target genes, in addition to increased proliferation. Co-immunoprecipitation assays revealed that PARP7 mono-ADP-ribosylated estrogen receptor α, and mass spectrometry mapped the modified peptides to the receptor’s ligand-independent transactivation domain. Co-immunoprecipitation with truncated estrogen receptor α variants identified that the hinge region of the receptor is required for PARP7-dependent mono-ADP-ribosylation. These results imply that PARP7-mediated mono-ADP-ribosylation may play an important role in estrogen receptor positive breast cancer.


2013 ◽  
Vol 451 (3) ◽  
pp. 453-461 ◽  
Author(s):  
Claudia C. S. Chini ◽  
Carlos Escande ◽  
Veronica Nin ◽  
Eduardo N. Chini

The nuclear receptor Rev-erbα has been implicated as a major regulator of the circadian clock and integrates circadian rhythm and metabolism. Rev-erbα controls circadian oscillations of several clock genes and Rev-erbα protein degradation is important for maintenance of the circadian oscillations and also for adipocyte differentiation. Elucidating the mechanisms that regulate Rev-erbα stability is essential for our understanding of these processes. In the present paper, we report that the protein DBC1 (Deleted in Breast Cancer 1) is a novel regulator of Rev-erbα. Rev-erbα and DBC1 interact in cells and in vivo, and DBC1 modulates the Rev-erbα repressor function. Depletion of DBC1 by siRNA (small interfering RNA) in cells or in DBC1-KO (knockout) mice produced a marked decrease in Rev-erbα protein levels, but not in mRNA levels. In contrast, DBC1 overexpression significantly enhanced Rev-erbα protein stability by preventing its ubiquitination and degradation. The regulation of Rev-erbα protein levels and function by DBC1 depends on both the N-terminal and C-terminal domains of DBC1. More importantly, in cells depleted of DBC1, there was a dramatic decrease in circadian oscillations of both Rev-erbα and BMAL1. In summary, our data identify DBC1 as an important regulator of the circadian receptor Rev-erbα and proposes that Rev-erbα could be involved in mediating some of the physiological effects of DBC1.


Cancer ◽  
1983 ◽  
Vol 51 (11) ◽  
pp. 2100-2104 ◽  
Author(s):  
Donna K. Thompson ◽  
James E. Haddow ◽  
Dwight E. Smith ◽  
Robert F. Ritchie

2008 ◽  
Vol 5 (2) ◽  
pp. 108-112 ◽  
Author(s):  
Xu Shi ◽  
Yanhong Cheng ◽  
Linglin Zou ◽  
Dongsheng Xiong ◽  
Yuan Zhou ◽  
...  

2021 ◽  
Author(s):  
Dan Qiu ◽  
Xianxin Yan ◽  
Xinqin Xiao ◽  
Guijuan Zhang ◽  
Yanqiu Wang ◽  
...  

Abstract Background: The precancerous disease of breast cancer is an inevitable stage in the emergence and development of breast neoplasms. Breast cancer (BC) is a common malignant tumor in female worldwide. A large number of literatures have proved that, as antitumor drugs, flavonoid compounds can promote proliferation and immune regulation of T cell. Many researchers believe that Quercetin (Que) has great potential in the field of anti-breast cancer. Besides that, γδ T cells are a class of non-traditional T cells, which have long attracted attention due to their potential in immunotherapy. Above all, JAK/STAT1 signaling pathway is closely related to the immunity.MethodsIn the experiment designed in this paper, we first used Que, one of the flavonoids, to screen the target gene. Then, MCF-10A, MCF-10AT, MCF-7 and MDA-MB231 BC cells were co-cultured with Que for 24h and 48h, apoptosis was found in some the cells. We then cultured Que with γδ T cells and found that Que can promote the proliferation of Vδ2 T cell subsets of γδ T cells, thus enhancing the killing effect of γδ T cells. Western blot was use to showed the change of JAK/STAT1 signaling pathway related proteins after the Que was co-cultured with MCF-10AT and MCF-7 for 48h.ResultsNetwork pharmacology has shown that Que related pathways include the JAK/STAT1 signaling pathway and are associated with precancerous breast cancers. Que induced apoptosis of MCF-10AT, MCF-7 and MDA-MB-231 in a time and concentration-dependent manner. Most importantly, Que can promote the differentiation of γδ T cells into the Vδ2 T cell subpopulation, this means that Que and γδ T cells may play a synergistic role in killing tumor cells and cellular immune regulation. In addition, our results showed that Que can increase in protein levels of IFNγ-R, p-JAK2 and p-STAT1, while the concomitant decrease protein levels of PD-L1.ConclusionsIn conclusion, Que plays a synergistic role in killing BC cells and promoting apoptosis by regulating the expression of IFNγ-R, p-JAK2, p-STAT1, and PD-L1 in the JAK/STAT1 signaling pathway and promoting the regulation of γδ T cells. Que may be a potential drug for the prevention of precancerous breast cancer and adjuvant treatment of BC.


2021 ◽  
Vol 14 ◽  
Author(s):  
Bayan Al-Momany ◽  
Hana Hammad ◽  
Mamoun Ahram

Background: Androgens potentially have an important role in the biology of breast cancer, particularly triple-negative breast cancer (TNBC). Androgen receptor (AR) may offer a novel therapeutic strategy including the use of microRNA (miRNA) molecules. We have previously shown that AR agonist, dihydrotestosterone (DHT), increases the expression of miR-328-3p in the TNBC MDA-MB-231 cells. One target of the latter miRNA is ATP-binding cassette subfamily G member 2 (ABCG2), which modulates the chemo-response of cancer cells by pumping out xenobiotics. Objective: Using MDA-MB-231 cells as a model system for TNBC, we hypothesized that DHT would induce cell sensitivity towards doxorubicin via increasing levels of miR-328-3p and, consequently, reducing ABCG2 levels. Methods: Chemo-response of cells towards doxorubicin, tamoxifen, and mitoxantrone was evaluated using cell viability MTT assay. Cells were transfected with both miR-328-3p mimic or antisense molecules. Real-time PCR was utilized to assess RNA levels and immunoblotting was performed to investigate levels of ABCG2 protein. PCR arrays were used to assess changes in the expression of drug response regulatory genes. Results: Contrary to our hypothesis, treating MDA-MB-231 cells with DHT, no effect towards tamoxifen or mitoxantrone and increased cell resistance towards doxorubicin were noted, concomitant with decreased expression of ABCG2. This under-expression of ABCG2 was also found in MCF-7 and MDA-MB-453 cells treated with DHT. Although miR-328-3p decreased ABCG2 mRNA and protein levels, the miRNA did not alter the chemo-response of cells towards doxorubicin and did not affect DHT-induced chemo-resistance. AR activation slightly decreased the expression of 5 genes, including insulin-like growth factor 1 receptor, that may explain the mechanism of DHT-induced chemo-resistance of cells. Conclusion: DHT regulates chemo-response via a mechanism independent of ABCG2 and miR-328-3p.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Chih-Jung Yao ◽  
Jyh-Ming Chow ◽  
Chia-Ming Yang ◽  
Hui-Ching Kuo ◽  
Chia-Lun Chang ◽  
...  

The Chinese herbal mixture, Tien-Hsien Liquid (THL), has been proven to suppress the growth and invasiveness of cancer cells and is currently regarded as a complementary medicine for the treatment of cancer. Our previous study using acute promyelocytic leukemia cells uncovered its effect on the downregulation of DNA methyltransferase 1 (DNMT1) which is often overexpressed in cancer cells resulting in the repression of tumor suppressors via hypermethylation. Herein, we explored the effects of THL in MCF-7 breast cancer cells that also demonstrate elevated DNMT1. The results show that THL dose-dependently downregulated DNMT1 accompanied by the induction of tumor suppressors such as p21 and p15. THL arrested cell cycle in G2/M phase and decreased the protein levels of cyclin A, cyclin B1, phospho-pRb, and AKT. DNMT1 inhibition was previously reported to exert a radiosensitizing effect in cancer cells through the repression of DNA repair. We found that THL enhanced radiation-induced clonogenic cell death in MCF-7 cells and decreased the level of DNA double-strand break repair protein, Rad51. Our observations may be the result of DNMT1 downregulation. Due to the fact that DNMT1 inhibition is now a mainstream strategy for anticancer therapy, further clinical trials of THL to confirm its clinical efficacy are warranted.


Sign in / Sign up

Export Citation Format

Share Document