Abstract 5493: Lethal mutagenesis of cancer cells by nucleoside analogs

Author(s):  
Edward J. Fox ◽  
Jiang-Cheng Shen ◽  
Lawrence A. Loeb
2017 ◽  
Author(s):  
Matthew D. Pauly ◽  
Daniel M. Lyons ◽  
Adam S. Lauring

AbstractLethal mutagenesis is a broad-spectrum antiviral strategy that employs mutagenic nucleoside analogs to exploit the high mutation rate and low mutational tolerance of many RNA viruses. Studies of mutagen-resistant viruses have identified determinants of replicative fidelity and the importance of mutation rate to viral population dynamics. We have previously demonstrated the effective lethal mutagenesis of influenza virus using three nucleoside analogs as well as the virus’s high genetic barrier to mutagen resistance. Here, we investigate the mutagen-resistant phenotypes of mutations that were enriched in drug-treated populations. We find that PB1 T123A has higher replicative fitness than the wild type, PR8, and maintains its level of genome production during 5-fluorouracil treatment. Surprisingly, this mutagen-resistant variant also has an increased baseline rate of C to U and G to A mutations. A second drug-selected mutation, PA T97I, interacts epistatically with PB T123A to mediate high-level mutagen resistance, predominantly by limiting the inhibitory effect of nucleosides on polymerase activity. Consistent with the importance of epistatic interactions in the influenza polymerase, we find that nucleoside analog resistance and replication fidelity are strain dependent. Two previously identified ribavirin-resistance mutations, PB1 V43I and PB1 D27N, do not confer drug resistance in the PR8 background, and the PR8-PB1 V43I polymerase exhibits a normal baseline mutation rate. Our results highlight the genetic complexity of the influenza virus polymerase and demonstrate that increased replicative capacity is a mechanism by which an RNA virus can counter the negative effects of elevated mutation rates.ImportanceRNA viruses exist as genetically diverse populations. This standing genetic diversity gives them the potential to adapt rapidly, evolve resistance to antiviral therapeutics, and evade immune responses. Viral mutants with altered mutation rates or mutational tolerance have provided insights into how genetic diversity arises and how it affects the behavior of RNA viruses. To this end, we identified variants within the polymerase complex of influenza virus that are able tolerate drug-mediated increases in viral mutation rates. We find that drug resistance is highly dependent on interactions among mutations in the polymerase complex. In contrast to other viruses, influenza virus counters the effect of higher mutation rates primarily by maintaining high levels of genome replication. These findings suggest the importance of maintaining large population sizes for viruses with high mutation rates and show that multiple proteins can affect both mutation rate and genome synthesis.


Author(s):  
Mahak Fatima ◽  
M. Mubasshar Iqbal Ahmed ◽  
Faiza Batool ◽  
Anjum Riaz ◽  
Moazzam Ali ◽  
...  

A recombinant deoxyribonucleoside kinase from Drosophila melanogaster with a deletion of the last 20 amino acid residues (named DmdNKΔC20) was hypothesized as a potential therapeutic tool for gene therapy due to its broad substrate specificity and better catalytic efficiency towards nucleosides and nucleoside analogs. This study was designed to evaluate the effect of DmdNKΔC20 for sensitizing human cancer cell lines towards gemcitabine and to further investigate its role in reversal of acquired drug resistance in gemcitabine-resistant cancer cell line. The DmdNKΔC20 gene was delivered to three different cancer cell lines, including breast, colon and liver cancer cells, using lipid-mediated transfection reagent. After transfection, gene expression of DmdNKΔC20 was confirmed by reverse transcription quantitative PCR (qRT-PCR) and the combined effect of DmdNKΔC20 and gemcitabine based cytotoxicity was observed by cell viability assay. We further evolved a gemcitabine-resistant breast cancer cell line (named MCF7-R) through directed evolution in the laboratory, which showed 375-fold more resistance compared to parental MCF7 cells. Upon transfection with DmdNKΔC20 gene, MCF7-R cells showed 83-fold higher sensitivity to gemcitabine compared to the control group of MCF7-R cells. Moreover, we observed 79% higher expression of p21 protein in transfected MCF7-R cells, which may indicate induction of apoptosis. Our findings highlight the importance and therapeutic potential of DmdNKΔC20 in combined gene/chemotherapy approach to target a wide range of cancers, particularly gemcitabine-resistant cancers.


Biomedicines ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 426
Author(s):  
S. M. Bakhtiar UL Islam ◽  
Young Mi Hong ◽  
Mefotse saha Cyrelle Ornella ◽  
Daniel Ngabire ◽  
Hyunjung Jang ◽  
...  

Viral replication of thymidine kinase deleted (tk−) vaccinia virus (VV) is attenuated in resting normal cells, enabling cancer selectivity, however, replication potency of VV-tk− appears to be diminished in cancer cells. Previously, we found that wild-type herpes simplex virus (HSV)-tk (HSV-tk) disappeared in most of the recombinant VV after multiple screenings, and only a few recombinant VV containing naturally mutated HSV-tk remained stable. In this study, VV-tk of western reserve (WR) VV was replaced by A167Y mutated HSV-tk (HSV-tk418m), to alter nucleoside selectivity from broad spectrum to purine exclusive selectivity. WOTS-418 remained stable after numerous passages. WOTS-418 replication was significantly attenuated in normal cells, but cytotoxicity was almost similar to that of wild type WR VV in cancer cells. WOTS-418 showed no lethality following a 5 × 108 PFU intranasal injection, contrasting WR VV, which showed 100% lethality at 1 × 105 PFU. Additionally, ganciclovir (GCV) but not BvdU inhibited WOTS-418 replication, confirming specificity to purine nucleoside analogs. The potency of WOTS-418 replication inhibition by GCV was > 10-fold higher than that of our previous truncated HSV-tk recombinant OTS-412. Overall, WOTS-418 demonstrated robust oncolytic efficacy and pharmacological safety which may delegate it as a candidate for future clinical use in OV therapy.


2015 ◽  
Vol 89 (7) ◽  
pp. 3584-3597 ◽  
Author(s):  
Matthew D. Pauly ◽  
Adam S. Lauring

ABSTRACTLethal mutagenesis is a broad-spectrum antiviral strategy that exploits the high mutation rate and low mutational tolerance of many RNA viruses. This approach uses mutagenic drugs to increase viral mutation rates and burden viral populations with mutations that reduce the number of infectious progeny. We investigated the effectiveness of lethal mutagenesis as a strategy against influenza virus using three nucleoside analogs, ribavirin, 5-azacytidine, and 5-fluorouracil. All three drugs were active against a panel of seasonal H3N2 and laboratory-adapted H1N1 strains. We found that each drug increased the frequency of mutations in influenza virus populations and decreased the virus' specific infectivity, indicating a mutagenic mode of action. We were able to drive viral populations to extinction by passaging influenza virus in the presence of each drug, indicating that complete lethal mutagenesis of influenza virus populations can be achieved when a sufficient mutational burden is applied. Population-wide resistance to these mutagenic agents did not arise after serial passage of influenza virus populations in sublethal concentrations of drug. Sequencing of these drug-passaged viral populations revealed genome-wide accumulation of mutations at low frequency. The replicative capacity of drug-passaged populations was reduced at higher multiplicities of infection, suggesting the presence of defective interfering particles and a possible barrier to the evolution of resistance. Together, our data suggest that lethal mutagenesis may be a particularly effective therapeutic approach with a high genetic barrier to resistance for influenza virus.IMPORTANCEInfluenza virus is an RNA virus that causes significant morbidity and mortality during annual epidemics. Novel therapies for RNA viruses are needed due to the ease with which these viruses evolve resistance to existing therapeutics. Lethal mutagenesis is a broad-spectrum strategy that exploits the high mutation rate and the low mutational tolerance of most RNA viruses. It is thought to possess a higher barrier to resistance than conventional antiviral strategies. We investigated the effectiveness of lethal mutagenesis against influenza virus using three different drugs. We showed that influenza virus was sensitive to lethal mutagenesis by demonstrating that all three drugs induced mutations and led to an increase in the generation of defective viral particles. We also found that it may be difficult for resistance to these drugs to arise at a population-wide level. Our data suggest that lethal mutagenesis may be an attractive anti-influenza strategy that warrants further investigation.


2007 ◽  
Vol 293 (1) ◽  
pp. C12-C21 ◽  
Author(s):  
Roberto Scatena ◽  
Patrizia Bottoni ◽  
Giorgia Botta ◽  
Giuseppe E. Martorana ◽  
Bruno Giardina

In addition to their well-known critical role in energy metabolism, mitochondria are now recognized as the location where various catabolic and anabolic processes, calcium fluxes, various oxygen-nitrogen reactive species, and other signal transduction pathways interact to maintain cell homeostasis and to mediate cellular responses to different stimuli. It is important to consider how pharmacological agents affect mitochondrial biochemistry, not only because of toxicological concerns but also because of potential therapeutic applications. Several potential targets could be envisaged at the mitochondrial level that may underlie the toxic effects of some drugs. Recently, antiviral nucleoside analogs have displayed mitochondrial toxicity through the inhibition of DNA polymerase-γ (pol-γ). Other drugs that target different components of mitochondrial channels can disrupt ion homeostasis or interfere with the mitochondrial permeability transition pore. Many known inhibitors of the mitochondrial electron transfer chain act by interfering with one or more of the respiratory chain complexes. Nonsteroidal anti-inflammatory drugs (NSAIDs), for example, may behave as oxidative phosphorylation uncouplers. The mitochondrial toxicity of other drugs seems to depend on free radical production, although the mechanisms have not yet been clarified. Meanwhile, drugs targeting mitochondria have been used to treat mitochondrial dysfunctions. Importantly, drugs that target the mitochondria of cancer cells have been developed recently; such drugs can trigger apoptosis or necrosis of the cancer cells. Thus the aim of this review is to highlight the role of mitochondria in pharmacotoxicology, and to describe whenever possible the main molecular mechanisms underlying unwanted and/or therapeutic effects.


1999 ◽  
Vol 96 (4) ◽  
pp. 1492-1497 ◽  
Author(s):  
L. A. Loeb ◽  
J. M. Essigmann ◽  
F. Kazazi ◽  
J. Zhang ◽  
K. D. Rose ◽  
...  

2020 ◽  
Vol 2 (3) ◽  
pp. FDD42
Author(s):  
Suranga L Senanayake

COVID-19 has become the gravest global public health crisis since the Spanish Flu of 1918. Combination antiviral therapy with repurposed broad-spectrum antiviral agents holds a highly promising immediate treatment strategy, especially given uncertainties of vaccine efficacy and developmental timeline. Here, we describe a novel hypothetical approach: combining available broad-spectrum antiviral agents such as nucleoside analogs with potential inhibitors of NendoU, for example nsp15 RNA substrate mimetics. While only hypothesis-generating, this approach may constitute a ‘double-hit’ whereby two CoV-unique protein elements of the replicase–transcriptase complex are inhibited simultaneously; this may be an Achilles' heel and precipitate lethal mutagenesis in a coronavirus. It remains to be seen whether structurally optimized RNA substrate mimetics in combination with clinically approved and repurposed backbone antivirals can synergistically inhibit this endonuclease in vitro, thus fulfilling the ‘double-hit hypothesis’.


2019 ◽  
Vol 11 (13) ◽  
pp. 1645-1657 ◽  
Author(s):  
Celia Perales ◽  
Isabel Gallego ◽  
Ana Isabel de Ávila ◽  
María Eugenia Soria ◽  
Josep Gregori ◽  
...  

Selection of viral mutants resistant to compounds used in therapy is a major determinant of treatment failure, a problem akin to antibiotic resistance in bacteria. In this scenario, mutagenic base and nucleoside analogs have entered the picture because they increase the mutation rate of viral populations to levels incompatible with their survival. This antiviral strategy is termed lethal mutagenesis. It has found a major impulse with the observation that some antiviral agents, which initially were considered only inhibitors of virus multiplication, may in effect exert part of their antiviral activity through mutagenesis. Here, we review the conceptual basis of lethal mutagenesis, the evidence of virus extinction through mutagenic nucleotide analogs and prospects for application in antiviral designs.


Author(s):  
N. P. Dmitrieva

One of the most characteristic features of cancer cells is their ability to metastasia. It is suggested that the modifications of the structure and properties of cancer cells surfaces play the main role in this process. The present work was aimed at finding out what ultrastructural features apear in tumor in vivo which removal of individual cancer cells from the cell population can provide. For this purpose the cellular interactions in the normal human thyroid and cancer tumor of this gland electron microscopic were studied. The tissues were fixed in osmium tetroxide and were embedded in Araldite-Epon.In normal human thyroid the most common type of intercellular contacts was represented by simple junction formed by the parallelalignment of adjacent cell membranees leaving in between an intermembranes space 15-20 nm filled with electronlucid material (Fig. 1a). Sometimes in the basal part of cells dilatations of the intercellular space 40-50 nm wide were found (Fig. 1a). Here the cell surfaces may form single short microvilli.


Author(s):  
Dong Yuming ◽  
Yang Guanglin ◽  
Wu Jifeng ◽  
Chen Xiaolin

On the basis of light microscopic observation, the ultrastructural localization of CEA in gastric cancer was studied by immunoelectron microscopic technique. The distribution of CEA in gastric cancer and its biological significance and the mechanism of abnormal distribution of CEA were further discussed.Among 104 surgically resected specimens of gastric cancer with PAP method at light microscopic level, the incidence of CEA(+) was 85.58%. All of mucinous carcinoma exhibited CEA(+). In tubular adenocarcinoma the incidence of CEA(+) showed a tendency to rising with the increase of degree of differentiation. In normal epithelia and intestinal metaplasia CEA was faintly present and was found only in the luminal surface. The CEA staining patterns in cancer cells were of three types--- cytoplasmic, membranous and weak reactive type. The ultrastructural localization of CEA in 14 cases of gastric cancer was studied by immunoelectron microscopic technique.There was a little or no CEA in the microvilli of normal epithelia. In intestinal metaplasia CEA was found on the microvilli of absorptive cells and among the mucus particles of goblet cells. In gastric cancer CEA was also distributed on the lateral and basal surface or even over the entire surface of cancer cells and lost their polarity completely. Many studies had proved that the alterations in surface glycoprotein were characteristic changes of tumor cells. The antigenic determinant of CEA was glycoprotein, so the alterations of tumor-associated surface glycoprotein opened up a new way for the diagnosis of tumors.


Sign in / Sign up

Export Citation Format

Share Document