Abstract LB-264: Two is better than one: Adoptive T cell therapy targeting tumor antigens and the tumor endothelium potentiates T cell activation and cytolytic activity

Author(s):  
Tiara Byrd ◽  
Kristen Fousek ◽  
Zakaria Grada ◽  
Kevin Aviles-Padilla ◽  
Kevin Bielamowicz ◽  
...  
2010 ◽  
Vol 359 (1-2) ◽  
pp. 11-20 ◽  
Author(s):  
Caroline Schroten ◽  
Robert Kraaij ◽  
Joke L.M. Veldhoven ◽  
Cor A. Berrevoets ◽  
Michael A. den Bakker ◽  
...  

Leukemia ◽  
2021 ◽  
Author(s):  
Mohamed-Reda Benmebarek ◽  
Bruno L. Cadilha ◽  
Monika Herrmann ◽  
Stefanie Lesch ◽  
Saskia Schmitt ◽  
...  

AbstractTargeted T cell therapy is highly effective in disease settings where tumor antigens are uniformly expressed on malignant cells and where off-tumor on-target-associated toxicity is manageable. Although acute myeloid leukemia (AML) has in principle been shown to be a T cell-sensitive disease by the graft-versus-leukemia activity of allogeneic stem cell transplantation, T cell therapy has so far failed in this setting. This is largely due to the lack of target structures both sufficiently selective and uniformly expressed on AML, causing unacceptable myeloid cell toxicity. To address this, we developed a modular and controllable MHC-unrestricted adoptive T cell therapy platform tailored to AML. This platform combines synthetic agonistic receptor (SAR) -transduced T cells with AML-targeting tandem single chain variable fragment (scFv) constructs. Construct exchange allows SAR T cells to be redirected toward alternative targets, a process enabled by the short half-life and controllability of these antibody fragments. Combining SAR-transduced T cells with the scFv constructs resulted in selective killing of CD33+ and CD123+ AML cell lines, as well as of patient-derived AML blasts. Durable responses and persistence of SAR-transduced T cells could also be demonstrated in AML xenograft models. Together these results warrant further translation of this novel platform for AML treatment.


2017 ◽  
Vol 35 (7_suppl) ◽  
pp. 151-151
Author(s):  
Christopher C. DeRenzo ◽  
Phuong Nguyen ◽  
Stephen Gottschalk

151 Background: T-cell therapy for cancer faces several challenges, including limited T-cell expansion at tumor sites, and lack of unique tumor antigens that are not expressed in normal tissues. To overcome the first obstacle, we developed Engager (ENG) T cells, which secrete bispecific molecules consisting of single chain variable fragments specific for CD3 and a tumor antigen. ENG T cells have the unique ability to redirect bystander T cells to tumors, amplifying antitumor effects. Costimulatory chimeric antigen receptors (CoCARs) are one potential strategy to restrict full T-cell activation to tumor sites that express a unique "antigen address." The goal of this project was now to generate T cells that express engager molecules and CoCARs (ENG/CoCAR T cells), which recognize distinct tumor antigens, and evaluate their effector function. Methods: We focused on two tumor antigens, EphA2 and HER2, which are expressed in a broad range of solid tumors. RD114-pseudotyped retroviral particles encoding an EphA2-ENG or a HER2-CoCAR were used to transduce CD3/CD28-activated human T cells. Transduced T cells were cocultured with EphA2+/HER2- or EphA2+/HER2+ tumor cells. Results: Both EphA2-ENG and EphA2-ENG/HER2-CoCAR T cells were activated by EphA2+ targets, as judged by IFNγ secretion. EphA2-ENG T cells secreted little IL-2 and died after one stimulation with EphA2+/HER2- or EphA2+/HER2+ tumor cells. In contrast, EphA2-ENG/HER2-CoCAR T cells secreted high levels of IL-2 and proliferated when stimulated with EphA2+/HER2+ cells. Little IL-2 secretion and no proliferation was observed after stimulation of the same T cells with EphA2+/HER2- cells, indicating these T cells are only fully activated in the presence of both target antigens. Upon repeated stimulation with EphA2+/HER2+ tumor cells, EphA2-ENG/HER2-CoCAR T cells continued to secrete IL-2 and proliferate without the addition of external cytokines for at least 10 weeks. Conclusions: EphA2-ENG/HER2-CoCAR T cells demonstrated robust dual antigen dependent IL-2 secretion, and continued proliferation upon repeat stimulation with EphA2+/HER2+ cells. Thus, providing antigen-specific costimulation is a potential strategy to improve the safety and efficacy of T-cell therapy for cancer.


2021 ◽  
Author(s):  
Shreyas N. Dahotre ◽  
Anna M. Romanov ◽  
Fang-Yi Su ◽  
Gabriel A. Kwong

AbstractAdoptive T cell therapies are transforming the treatment of solid and liquid tumors, yet their widespread adoption is limited in part by the challenge of generating functional cells. T cell activation and expansion using conventional antigen-presenting cells (APCs) is unreliable due to the variable quality of donor-derived APCs. As a result, engineered approaches using nanomaterials presenting T cell activation signals are a promising alternative due to their ability to be robustly manufactured with precise control over stimulation cues. In this work, we design synthetic APCs that consist of liposomes surface-functionalized with peptide-major histocompatibility complexes (pMHC). Synthetic APCs selectively target and activate antigen-specific T cell populations to levels similar to conventional protocols using non-specific αCD3 and αCD28 antibodies without the need for costimulation signals. T cells treated with synthetic APCs produce effector cytokines and demonstrate cytotoxic activity when co-cultured with tumor cells presenting target antigen in vitro. Following adoptive transfer into tumor-bearing mice, activated cells control tumor growth and improve overall survival compared to untreated mice. Synthetic APCs could potentially be used in the future to improve the accessibility of adoptive T cell therapies by removing the need for conventional APCs during manufacturing.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e15203-e15203
Author(s):  
Di Zhang ◽  
Lihua Shi ◽  
Susan Tam ◽  
Man-Cheong Fung

e15203 Background: Although checkpoint inhibitor immunotherapy and adoptive T-cell therapy revolutionized cancer treatments, such approaches suffer either from lack of target specificity for checkpoint inhibitors or inability to target intracellular tumor-related antigens from CAR-T therapy. Here, we report the development of novel Tavo Immune Modulator (TIM) biologics molecules which can specifically recognize tumor antigen-specific T cells through an engineered pMHC complex with peptides derived from intracellular tumor-related antigens. These molecules can selectively activate such T cells through engineered T cell co-stimulatory modulators for enhanced tumor cell killing. Methods: NY-ESO-1 and MAGE-A10 TIM molecules were constructed as fusions of HLA-A*02:01 MHC complexed with either NY-ESO-1 (157-165) or MAGE-A10 (254-262) epitope peptides at the N-termini and various T cell costimulatory modulators at the C-termini of IgG heavy and light chains. TIM molecules were expressed in Expi293 cells and purified by Protein A affinity chromatography. Specific binding of TIM with cancer specific T cells was evaluated by immunostaining. The activation and proliferation of tumor specific CD8+ T cells were confirmed in T cell activation and recall assays. Results: Both NY-ESO-1 and MAGE-A10 specific TIM molecules were generated which recognized corresponding tumor specific T cells. NY-ESO-1 TIM engineered with IL2 could activate NY-ESO-1 specific CD8+ T cell exclusively. Engineering additional T cell costimulatory factors along with IL2 on NY-ESO-1 TIM molecule could further boost T cell proliferation and activation in T cell recall assays. Besides NY-ESO-1, combinations of T cell costimulatory factors with MAGE-A10 TIM molecules enhanced specific T cell activation. Additional in vitro and in vivo studies are ongoing to demonstrate efficacy of such novel TIM molecules in eliminating different types of NY-ESO-1 and MAGE-A10 which are over-expressed on tumor cells. Conclusions: This study demonstrates the utility of NY-ESO-1 and MAGE-A10 TIM molecules in the selective recognition and activation of tumor antigen-specific T cells. Such novel biologics molecules may provide target specificity in tumor treatment, and potential targeting of intracellular tumor-related antigens presented as peptides in MHC complexes on cell surfaces. Selective activation of tumor-specific T cells may provide a unique method for the treatment of various solid tumors and warrants further investigation.


Author(s):  
Pradip Bajgain ◽  
Supannikar Tawinwung ◽  
Lindsey D’Elia ◽  
Sujita Sukumaran ◽  
Norihiro Watanabe ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Siao-Yi Wang ◽  
Tamson V. Moore ◽  
Annika V. Dalheim ◽  
Gina M. Scurti ◽  
Michael I. Nishimura

AbstractAdoptive T cell therapy with T cell receptor (TCR)-modified T cells has shown promise in treating metastatic melanoma and other malignancies. However, studies are needed to improve the efficacy and durability of responses of TCR-modified T cells. Standard protocols for generating TCR-modified T cells involve activating T cells through CD3 stimulation to allow for the efficient transfer of tumor-reactive receptors with viral vectors. T cell activation results in terminal differentiation and shortening of telomeres, which are likely suboptimal for therapy. In these studies, we demonstrate efficient T cell transduction with the melanoma-reactive TIL1383I TCR through culturing with interleukin 7 (IL-7) in the absence of CD3 activation. The TIL1383I TCR-modified T cells generated following IL-7 culture were enriched with naïve (TN) and memory stem cell populations (TSCM) while maintaining longer telomere lengths. Furthermore, we demonstrated melanoma-reactivity of TIL1383I TCR-modified cells generated following IL-7 culture using in vitro assays and a superior response in an in vivo melanoma model. These results suggest that utilizing IL-7 to generate TCR-modified T cells in the absence of activation is a feasible strategy to improve adoptive T cell therapies for melanoma and other malignancies.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4484-4484 ◽  
Author(s):  
Eric L Smith ◽  
Maria Lia Palomba ◽  
Jae H Park ◽  
Renier J. Brentjens

Abstract Chimeric antigen receptor (CAR) modified T-cell therapy consists of ex-vivo genetic manipulation of autologous lymphocytes in order to establish robust T-cell mediated anti-tumor immunity. Our group was the first to design and evaluate a CAR targeted toward the B cell antigen CD19 in mice. Currently we utilize a second generation CAR comprised of a single-chain variable fragment (scFv) derived from an antibody against CD19 fused to the CD3 ζ chain and the CD28 intracellular signaling domain (19-28z) to provide the necessary signal 1 and signal 2 for enhanced T-cell activation and persistence. We have gone on to test the safety and efficacy of 19-28z CAR T-cells in patients with chronic lymphocytic leukemia (CLL) and acute lymphoblastic leukemia (ALL). We observed rapid complete molecular remissions in the first 14/16 patients treated with relapsed/refractory ALL. We hypothesize that contributing to the enhanced efficacy seen in ALL, when compared to solid tumors or extra-medullary CLL, is the fact that ALL is a bone marrow predominant disease, which may provide a microenvironment more amenable to T-cell therapy. Waldenström’s Macroglobulinemia (WM) is an ideal disease to test 19-28z CAR-modified T-cell therapy, as it is often bone marrow predominant, and WM cells from patient samples typically uniformly express high levels of CD19. Furthermore, despite recent progress made with novel BCR-directed therapy, complete eradication of the WM clone from the bone marrow niche remains elusive, therefore providing an ideal clinical scenario for treatment consolidation via alternative cytotoxic methods such as cellular immunotherapy. Using the human WM cell line, BCWM.1, we evaluated the in vitro efficacy of 19-28z CAR-modified T-cells when compared to mock transduced T cells or T cells transduced with an irrelevant second generation CAR directed towards the ovarian antigen MUC16. In a 4 hour co-culture assay, we observed significant cytotoxicity, even at low effector:target ratios (52% lysis at 1:1; 92% lysis at 10:1; p<0.01). This corresponded to increased secretion of INFγ and IL-2, markers of T-cell activation (p<0.01). We then conducted in vivo studies using sublethally irradiated SCID/beige mice to generate a systemic model of WM via tail vein injection of 1x106 luciferase transduced BCWM.1 cells. This model is characterized by tumor growth in the bone marrow followed by rapid spread to the liver, lungs, kidney, and CNS. Mice were monitored by weekly bioluminescent imaging (BLI) and ultimately were sacrificed when they developed hind leg paralysis. 19-28z CAR modified T-cells administered at day 7, after tumor establishment, when compared to non-treated and irrelevant CAR-modified T cell controls, delayed the progression of disease and doubled the median survival time of the mice after treatment (p=0.001). Taken together, the pre-clinical efficacy demonstrated in this abstract and the clinical features of WM, listed above, provide the rational for testing 19-28z CAR modified T cells clinically for WM. We have now opened a clinical trial for patients with relapsed or refractory WM, in which chemotherapy preconditioning is followed by a single dose of 19-28z CAR modified autologous T-cells (NCT00466531). Disclosures Brentjens: Juno Therapeutics: Consultancy, Scientific co-founder and Stock holder Other.


2020 ◽  
Vol 8 (2) ◽  
pp. e000668
Author(s):  
Troels Holz Borch ◽  
Rikke Andersen ◽  
Eva Ellebaek ◽  
Özcan Met ◽  
Marco Donia ◽  
...  

Personalized cell therapy targeting tumor antigens with expanded tumor-infiltrating lymphocytes (TILs) has shown great promise in metastatic melanoma (MM) since the 90s. However, MM was first-in line to benefit from the wave of checkpoint inhibitors (CPI), which shifted the focus of immunotherapy almost fully to immune CPI. Still, the majority of patients fail to benefit from CPI treatment, raising the intriguing question on how TIL therapy may fit into the changing landscape of melanoma treatment. We took advantage of data from a unique cohort of patients with MM treated with T-cell therapy in consecutive clinical trials at our institution across the last 10 years. Based on detailed data on patient characteristics, pre-TIL and post-TIL treatments and long-term follow-up, we were able to address the important issue of how TIL therapy can be positioned in the current CPI era. We found that previous progression on anticytotoxic T-lymphocyte-associated protein 4 do not seem to harm neither rate nor duration of response to TIL therapy. Importantly, even in the hard-to-treat population of patients who progressed on antiprogrammed cell death protein 1 (anti-PD-1), an objective response rate of 32% was achieved, including durable responses. Yet, median progression-free survival was reduced in this anti-PD-1 refractory population. Trial registration number: ClinicalTrials.gov ID: NCT00937625, NCT02379195 and NCT02354690.


Sign in / Sign up

Export Citation Format

Share Document