Abstract 551: Assessment of computational approaches for quantification of immune cell infiltration from gene expression profiles of complex biological samples

Author(s):  
Brendan P. Hodkinson ◽  
Michael E. Schaffer ◽  
Michael Gormley
2019 ◽  
Author(s):  
Yiling Cao ◽  
Weihao Tang ◽  
Wanxin Tang

Abstract Objects Lupus nephritis (LN) is a common complication of systemic lupus erythematosus that presents a high risk of end-stage renal disease. In the present study, we used CIBERSORT and gene set enrichment analysis (GSEA) of gene expression profiles to identify immune cell infiltration characteristics and related core genes in LN. Methods Datasets from the Gene Expression Omnibus, GSE32591 and GSE113342, were downloaded for further analysis. The GSE32591 dataset, which included 32 LN glomerular biopsy tissues and 14 glomerular tissues of living donors, was analyzed by CIBERSORT. Different immune cell types in LN were analyzed by the Limma software. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis based on GSEA were performed by clusterProfiler software. Lists of core genes were derived from Spearman correlation between the most significant GO term and differentially expressed immune cell gene from CIBERSORT. GSE113342 was employed to validate the association between selected core genes and clinical manifestation. Result Five types of immune cells revealed important associations with LN, and monocytes emerged to be the prominent differences. GO and KEGG analyses indicated that immune response pathways are significantly enriched in LN. The Spearman correlation indicated that 15 genes, including FCER1G, CLEC7A, MARCO, CLEC7A, PSMB9, and PSMB8, were closely related to clinical features. Conclusion This study is the first to identify immune cell infiltration with microarray data of glomeruli in LN by using CIBERSORT analysis and provides novel evidence and clues for further research of the molecular mechanisms of LN.


2021 ◽  
Vol 8 ◽  
Author(s):  
Feng Zhu ◽  
Lili Zuo ◽  
Rui Hu ◽  
Jin Wang ◽  
Zhihua Yang ◽  
...  

Pulmonary hypertension (PH) is a frequent complication in patients with pulmonary fibrosis (PF), whereas the mechanism was not well-understood. This study aimed to explore the influence of immune cell infiltration on PH status based on the genomic expression profiles. Microarray data of GSE24988 were downloaded from the GEO database, including 116 lung tissue samples derived from PF patients with various PH status. Proportion of infiltrated immune cells was evaluated using CIBERSORT, a gene expression-based de-convolution algorithm. A random forest classifier was constructed and out of bag (OOB) cross-validation was carried out for PH prediction. The proportions of immune infiltration cells varied differently in PH samples except T regulatory cells (p-value = 0). Compared with non-PH samples, increased number of naive B cells and plasma cells were identified in PH samples, whereas activated dendritic cells and M2 macrophages were relatively lower (p < 0.05). In the random forest model, these four types of immune cells obtained a higher variable importance score than other cells, including mean decreased accuracy and mean decreased gini evaluation. We ran the OOB cross-validation in each sample of datasets (training set and testing set) and obtained 79 and 69% accuracy, respectively. Abnormal proportions of four types of immune cells were identified in PH samples compared with non-PH samples, suggesting their involvement in PH development. In summary, the immune cell infiltration in PF patients is associated with the PH status of patients, which deserves further investigation in the future.


2019 ◽  
Author(s):  
Yiling Cao ◽  
Weihao Tang ◽  
Wanxin Tang

Abstract Background Lupus nephritis (LN) is a common complication of systemic lupus erythematosus that presents a high risk of end-stage renal disease. In the present study, we used CIBERSORT and gene set enrichment analysis (GSEA) of gene expression profiles to identify immune cell infiltration characteristics and related core genes in LN. Results Datasets from the Gene Expression Omnibus, GSE32591 and GSE113342, were downloaded for further analysis. The GSE32591 dataset, which included 32 LN glomerular biopsy tissues and 14 glomerular tissues from living donors, was analyzed by CIBERSORT. Different immune cell types in LN were analyzed by the Limma software. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis based on GSEA were performed by clusterProfiler software. Lists of core genes were derived from Spearman correlation between the most significant GO term and differentially expressed immune cell gene from CIBERSORT. GSE113342 was employed to validate the association between selected core genes and clinical manifestation. Five types of immune cells revealed important associations with LN, and monocytes emerged as having the most prominent differences. GO and KEGG analyses indicated that immune response pathways are significantly enriched in LN. The Spearman correlation indicated that 15 genes, including FCER1G, CLEC7A, MARCO, CLEC7A, PSMB9, and PSMB8 , were closely related to clinical features. Conclusions This study is the first to identify immune cell infiltration with microarray data of glomeruli in LN by using CIBERSORT analysis and provides novel evidence and clues for further research of the molecular mechanisms of LN.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Yiling Cao ◽  
Weihao Tang ◽  
Wanxin Tang

Abstract Background Lupus nephritis (LN) is a common complication of systemic lupus erythematosus that presents a high risk of end-stage renal disease. In the present study, we used CIBERSORT and gene set enrichment analysis (GSEA) of gene expression profiles to identify immune cell infiltration characteristics and related core genes in LN. Results Datasets from the Gene Expression Omnibus, GSE32591 and GSE113342, were downloaded for further analysis. The GSE32591 dataset, which included 32 LN glomerular biopsy tissues and 14 glomerular tissues from living donors, was analyzed by CIBERSORT. Different immune cell types in LN were analyzed by the Limma software. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis based on GSEA were performed by clusterProfiler software. Lists of core genes were derived from Spearman correlation between the most significant GO term and differentially expressed immune cell gene from CIBERSORT. GSE113342 was employed to validate the association between selected core genes and clinical manifestation. Five types of immune cells revealed important associations with LN, and monocytes emerged as having the most prominent differences. GO and KEGG analyses indicated that immune response pathways are significantly enriched in LN. The Spearman correlation indicated that 15 genes, including FCER1G, CLEC7A, MARCO, CLEC7A, PSMB9, and PSMB8, were closely related to clinical features. Conclusions This study is the first to identify immune cell infiltration with microarray data of glomeruli in LN by using CIBERSORT analysis and provides novel evidence and clues for further research of the molecular mechanisms of LN.


2019 ◽  
Author(s):  
Yiling Cao ◽  
Weihao Tang ◽  
Wanxin Tang

Abstract Background Lupus nephritis (LN) is a common complication of systemic lupus erythematosus that presents a high risk of end-stage renal disease. In the present study, we used CIBERSORT and gene set enrichment analysis (GSEA) of gene expression profiles to identify immune cell infiltration characteristics and related core genes in LN. Results Datasets from the Gene Expression Omnibus, GSE32591 and GSE113342, were downloaded for further analysis. The GSE32591 dataset, which included 32 LN glomerular biopsy tissues and 14 glomerular tissues from living donors, was analyzed by CIBERSORT. Different immune cell types in LN were analyzed by the Limma software. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis based on GSEA were performed by clusterProfiler software. Lists of core genes were derived from Spearman correlation between the most significant GO term and differentially expressed immune cell gene from CIBERSORT. GSE113342 was employed to validate the association between selected core genes and clinical manifestation. Five types of immune cells revealed important associations with LN, and monocytes emerged as having the most prominent differences. GO and KEGG analyses indicated that immune response pathways are significantly enriched in LN. The Spearman correlation indicated that 15 genes, including FCER1G, CLEC7A, MARCO, CLEC7A, PSMB9, and PSMB8 , were closely related to clinical features. Conclusions This study is the first to identify immune cell infiltration with microarray data of glomeruli in LN by using CIBERSORT analysis and provides novel evidence and clues for further research of the molecular mechanisms of LN.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Xingwang Zhao ◽  
Longlong Zhang ◽  
Juan Wang ◽  
Min Zhang ◽  
Zhiqiang Song ◽  
...  

Abstract Background Systemic lupus erythematosus (SLE) is a multisystemic, chronic inflammatory disease characterized by destructive systemic organ involvement, which could cause the decreased functional capacity, increased morbidity and mortality. Previous studies show that SLE is characterized by autoimmune, inflammatory processes, and tissue destruction. Some seriously-ill patients could develop into lupus nephritis. However, the cause and underlying molecular events of SLE needs to be further resolved. Methods The expression profiles of GSE144390, GSE4588, GSE50772 and GSE81622 were downloaded from the Gene Expression Omnibus (GEO) database to obtain differentially expressed genes (DEGs) between SLE and healthy samples. The gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichments of DEGs were performed by metascape etc. online analyses. The protein–protein interaction (PPI) networks of the DEGs were constructed by GENEMANIA software. We performed Gene Set Enrichment Analysis (GSEA) to further understand the functions of the hub gene, Weighted gene co‐expression network analysis (WGCNA) would be utilized to build a gene co‐expression network, and the most significant module and hub genes was identified. CIBERSORT tools have facilitated the analysis of immune cell infiltration patterns of diseases. The receiver operating characteristic (ROC) analyses were conducted to explore the value of DEGs for SLE diagnosis. Results In total, 6 DEGs (IFI27, IFI44, IFI44L, IFI6, EPSTI1 and OAS1) were screened, Biological functions analysis identified key related pathways, gene modules and co‐expression networks in SLE. IFI27 may be closely correlated with the occurrence of SLE. We found that an increased infiltration of moncytes, while NK cells resting infiltrated less may be related to the occurrence of SLE. Conclusion IFI27 may be closely related pathogenesis of SLE, and represents a new candidate molecular marker of the occurrence and progression of SLE. Moreover immune cell infiltration plays important role in the progession of SLE.


2018 ◽  
Vol 115 (50) ◽  
pp. E11701-E11710 ◽  
Author(s):  
Yoong Wearn Lim ◽  
Haiyin Chen-Harris ◽  
Oleg Mayba ◽  
Steve Lianoglou ◽  
Arthur Wuster ◽  
...  

Cancer immunotherapy has emerged as an effective therapy in a variety of cancers. However, a key challenge in the field is that only a subset of patients who receive immunotherapy exhibit durable response. It has been hypothesized that host genetics influences the inherent immune profiles of patients and may underlie their differential response to immunotherapy. Herein, we systematically determined the association of common germline genetic variants with gene expression and immune cell infiltration of the tumor. We identified 64,094 expression quantitative trait loci (eQTLs) that associated with 18,210 genes (eGenes) across 24 human cancers. Overall, eGenes were enriched for their being involved in immune processes, suggesting that expression of immune genes can be shaped by hereditary genetic variants. We identified the endoplasmic reticulum aminopeptidase 2 (ERAP2) gene as a pan-cancer type eGene whose expression levels stratified overall survival in a subset of patients with bladder cancer receiving anti–PD-L1 (atezolizumab) therapy. Finally, we identified 103 gene signature QTLs (gsQTLs) that were associated with predicted immune cell abundance within the tumor microenvironment. Our findings highlight the impact of germline SNPs on cancer-immune phenotypes and response to therapy; and these analyses provide a resource for integration of germline genetics as a component of personalized cancer immunotherapy.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A954-A955
Author(s):  
Jacob Kaufman ◽  
Doug Cress ◽  
Theresa Boyle ◽  
David Carbone ◽  
Neal Ready ◽  
...  

BackgroundLKB1 (STK11) is a commonly disrupted tumor suppressor in NSCLC. Its loss promotes an immune exclusion phenotype with evidence of low expression of interferon stimulated genes (ISG) and decreased microenvironment immune infiltration.1 2 Clinically, LKB1 loss induces primary immunotherapy resistance.3 LKB1 is a master regulator of a complex downstream kinase network and has pleiotropic effects on cell biology. Understanding the heterogeneous phenotypes associated with LKB1 loss and their influence on tumor-immune biology will help define and overcome mechanisms of immunotherapy resistance within this subset of lung cancer.MethodsWe applied multi-omic analyses across multiple lung adenocarcinoma datasets2 4–6 (>1000 tumors) to define transcriptional and genetic features enriched in LKB1-deficient lung cancer. Top scoring phenotypes exhibited heterogeneity across LKB1-loss tumors, and were further interrogated to determine association with increased or decreased markers of immune activity. Further, immune cell-types were estimated by Cibersort to identify effects of LKB1 loss on the immune microenvironment. Key conclusions were confirmed by blinded pathology review.ResultsWe show that LKB1 loss significantly affects differentiation patterns, with enrichment of ASCL1-expressing tumors with putative neuroendocrine differentiation. LKB1-deficient neuroendocrine tumors had lower expression of Interferon Stimulated Genes (ISG), MHC1 and MHC2 components, and immune infiltration compared to LKB1-WT and non-neuroendocrine LKB1-deficient tumors (figure 1).The abundances of 22 immune cell types assessed by Cibersort were compared between LKB1-deficient and LKB1-WT tumors. We observe skewing of immune microenvironmental composition by LKB1 loss, with lower abundance of dendritic cells, monocytes, and macrophages, and increased levels of neutrophils and plasma cells (table 1). These trends were most pronounced among tumors with neuroendocrine differentiation, and were concordant across three independent datasets. In a confirmatory subset of 20 tumors, plasma cell abundance was assessed by a blinded pathologist. Pathologist assessment was 100% concordant with Cibersort prediction, and association with LKB1 loss was confirmed (P=0.001).Abstract 909 Figure 1Immune-associated Gene Expression Profiles Affected by Neuroendocrine Differentiation within LKB1-Deficient Lung Adenocarcinomas. Gene expression profiles corresponding to five immune-associated phenotypes are shown with bars indicating average GEP scores for tumors grouped according to LKB1 and neuroendocrine status as indicated. P-values represent results from Student’s T-test between groups as indicated.Abstract 909 Table 1LKB1 Loss Affects Composition of Immune Microenvironment. Values indicate log10 P-values comparing LKB1-loss to LKB1-WT tumors. Positive (red) indicates increased abundance in LKB1 loss. Negative (blue) indicates decreased abundance.ConclusionsWe conclude that tumor differentiation patterns strongly influence the immune microenvironment and immune exclusion characteristics of LKB1-deficient tumors. Neuroendocrine differentiation is associated with the strongest immune exclusion characteristics and should be evaluated clinically for evidence of immunotherapy resistance. A novel observation of increased plasma cell abundance is observed across multiple datasets and confirmed by pathology. Causal mechanisms linking differentiation status to immune activity is not well understood, and the functional role of plasma cells in the immune biology of LKB1-deficient tumors is undefined. These questions warrant further study to inform precision immuno-oncology treatments for these patients.AcknowledgementsThis work was funded by SITC AZ Immunotherapy in Lung Cancer grant (SPS256666) and DOD Lung Cancer Research Program Concept Award (LC180633).ReferencesSkoulidis F, Byers LA, Diao L, et al. Co-occurring genomic alterations define major subsets of KRAS-mutant lung adenocarcinoma with distinct biology, immune profiles, and therapeutic vulnerabilities. Cancer Discov 2015;5:860–77.Schabath MB, Welsh EA, Fulp WJ, et al. Differential association of STK11 and TP53 with KRAS mutation-associated gene expression, proliferation and immune surveillance in lung adenocarcinoma. Oncogene 2016;35:3209–16.Skoulidis F, Goldberg ME, Greenawalt DM, et al. STK11/LKB1 mutations and PD-1 inhibitor resistance in KRAS-mutant lung adenocarcinoma. Cancer Discovery 2018;8:822-835.Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature 2014;511:543–50.Chitale D, Gong Y, Taylor BS, et al. An integrated genomic analysis of lung cancer reveals loss of DUSP4 in EGFR-mutant tumors. Oncogene 2009;28:2773–83.Shedden K, Taylor JM, Enkemann SA, et al. Gene expression-based survival prediction in lung adenocarcinoma: a multi-site, blinded validation study. Nat Med 2008;14:822–7.


Author(s):  
Mohsen Ahmadi ◽  
Negin Saffarzadeh ◽  
Mohammad Amin Habibi ◽  
Fatemeh Hajiesmaeili ◽  
Nima Rezaei

AbstractNovel coronavirus disease (COVID-19) pandemic has become a global health emergency. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) interacts with angiotensin-converting enzyme 2 (ACE2) to enter the cells and infects diverse human tissues. It has been reported that a few conditions, including cancer, predispose individuals to SARS-CoV-2 infection and severe form of COVID-19. These findings led us to evaluate the susceptibility of colon adenocarcinoma (COAD) patients to SARS-CoV-2 infection by investigation of ACE2 expression in their tumor tissues. The expression analysis revealed that both mRNA and protein levels of ACE2 had increased in colon cancer samples than normal group. Next, the prognosis analysis has indicated that the upregulation of ACE2 was not correlated with patient survival outcomes. Further assessment displayed the hypomethylation of the ACE2 gene promoter in COAD patients. Surprisingly, this methylation status has a strong negative correlation with ACE2 gene expression. The functional enrichment analysis of the genes that had similar expression patterns with ACE2 in colon cancer tissues demonstrated that they mainly enriched in Vitamin digestion and absorption, Sulfur relay system, and Fat digestion and absorption pathways. Finally, we found that ACE2 gene expression had a significant association with the immune cell infiltration levels in COAD patients. In conclusion, it has plausible that COAD patients are more likely to be infected with SARS-CoV-2 and experience severe injuries. Moreover, COVID-19 would bring unfavorable survival outcomes of patients with colon cancer by the way of immune cell infiltration linked process. The present study highlights the importance of preventive actions for COAD patients during the COVID-19 pandemic.


Sign in / Sign up

Export Citation Format

Share Document