Abstract 3242: Triple checkpoint blockade targeting PD-1, TIM-3, and LAG-3 reinvigorates ovarian cancer-infiltrating T cells by increasing T cell polyfunctionality and effector function

Author(s):  
Johanna K. Kaufmann ◽  
Brianna Flynn ◽  
Kevin Morse ◽  
Maria C. Speranza ◽  
Jing Zhou ◽  
...  
2021 ◽  
Vol 9 (6) ◽  
pp. e002269
Author(s):  
Shota Aoyama ◽  
Ryosuke Nakagawa ◽  
Satoshi Nemoto ◽  
Patricio Perez-Villarroel ◽  
James J Mulé ◽  
...  

BackgroundThe temporal response to checkpoint blockade (CB) is incompletely understood. Here, we profiled the tumor infiltrating lymphocyte (TIL) landscape in response to combination checkpoint blockade at two distinct timepoints of solid tumor growth.MethodsC57BL/6 mice bearing subcutaneous MC38 tumors were treated with anti-PD-1 and/or anti-CTLA-4 antibodies. At 11 or 21 days, TIL phenotype and effector function were analyzed in excised tumor digests using high parameter flow cytometry. The contributions of major TIL populations toward overall response were then assessed using ex vivo cytotoxicity and in vivo tumor growth assays.ResultsThe distribution and effector function among 37 distinct TIL populations shifted dramatically between early and late MC38 growth. At 11 days, the immune response was dominated by Tumor necrosis factor alpha (TNFα)-producing NKT, representing over half of all TIL. These were accompanied by modest frequencies of natural killer (NK), CD4+, or CD8+ T cells, producing low levels of IFN-γ. At 21 days, NKT populations were reduced to a combined 20% of TIL, giving way to increased NK, CD4+, and CD8+ T cells, with increased IFN-γ production. Treatment with CB accelerated this switch. At day 11, CB reduced NKT to less than 20% of all TIL, downregulated TNFα across NKT and CD4+ T cell populations, increased CD4+ and CD8+ TIL frequencies, and significantly upregulated IFN-γ production. Degranulation was largely associated with NK and NKT TIL. Blockade of H-2kb and/or CD1d during ex vivo cytotoxicity assays revealed NKT has limited direct cytotoxicity against parent MC38. However, forced CD1d overexpression in MC38 cells significantly diminished tumor growth, suggesting NKT TIL exerts indirect control over MC38 growth.ConclusionsDespite an indirect benefit of early NKT activity, CB accelerates a switch from TNFα, NKT-driven immune response toward an IFN-γ driven CD4+/CD8+ T cell response in MC38 tumors. These results uncover a novel NKT/T cell switch that may be a key feature of CB response in CD1d+ tumors.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A248-A248
Author(s):  
Anupallavi Srinivasamani ◽  
Michael Curran ◽  
Qinying Liu ◽  
Shwetha Hegde ◽  
Chao-Hsien Chen ◽  
...  

BackgroundPD-1/PD-L1 blockade is responsible for the majority of the success of cancer immunotherapy.1 However, only 14% of patients eligible to receive checkpoint blockade achieve objected clinical responses.2 3 The reason for the failure of PD-L1 blockade may be attributed to the recently appreciated widespread expression of PD-L2 across human cancers and its immunosuppresive stromal cells.4 PD-L2 expression was shown to be as or more predictive of response to PD-1 blockade than PD-L14. PD-L2 traditionally was dismissed as functionally redundant to PD-L1 varying only in pattern of expression. We hypothesize that PD-L2 engages PD-1 to generate a distinct inhibitory signal from that of PD-L1, and antibody mediated blockade and depletion of PD-L2+ cells may promote anti-tumor immunity that is superior to PD-L1 blockade alone.MethodsCell based bioluminescent assay demonstrated the nature of regulation mediated by human PD-L2 through the PD-1 co-receptor. RNA-sequencing identified key differences in the signaling pathways generated in Jurkat T cells by PD-1 binding to PD-L1 or PD-L2. Multidimensional flow cytometry determined the differential effects of PD-L1 and PD-L2 on human T cell proliferation and effector function. Western blot elucidated the temporal kinetics of inhibition mediated by PD-L1 and PD-L2. Survival studies in murine syngeneic lymphoma model evaluated the efficacy of antibody mediated blockade and depletion of PD-L2+ cells.ResultsWe validated that human PD-L2, unlike murine PD-L2, generates a purely co-inhibitory signal in human T cells, albeit with a reduced inhibitory potential relative to PD-L1. We discovered significant differences in downstream T cell signaling pathways generated by PD-L1 versus PD-L2 through PD-1 engagement. Human PD-L1 and PD-L2 differentially modulated T cell effector function and proliferation with PD-L2 preferentially arresting T cells in S-phase of cell cycle. PD-L1 and PD-L2 also differed in the temporal kinetics of dephosphorylation of the membrane proximal proteins in the TCR-CD3 signaling complex. We observed that combination blockade of PD-L1 and PD-L2 improves on blockade of PD-L1 alone resulting in increased production of IL-2 and IFNγ in primary human mixed lymphocyte reactions. Our data in a syngeneic murine model of EL4 showed that effector-function capable PD-L2 blocking antibodies are therapeutically superior to PD-L1 or PD-L2 blockade alone.ConclusionsWe are the first to report on T cell immunoregulatory functions of PD-L2 which are distinct from those of PD-L1, and demonstrate that the more tumor-selective expression pattern of PD-L2 relative to PD-L1 provides a therapeutic advantage to effector-function capable PD-L2 antibodies.AcknowledgementsAS was supported by the CPRIT Research Training Grant(RP170067)ReferencesRibas A, Wolchok JD (2018). Cancer immunotherapy using checkpoint blockade. Science 359:1350–1355.Cristescu R, Mogg R, Ayers M, Albright A, Murphy E, Yearley J, Sher X, Liu XQ, Lu H, Nebozhyn M, Zhang C, Lunceford JK, Joe A, Cheng J, Webber AL, Ibrahim N, Plimack ER, Ott PA, Seiwert TY, Ribas A, McClanahan TK, Tomassini JE, Loboda A, Kaufman D (2018). Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science 362.Haslam A, Prasad V (2019). Estimation of the percentage of US patients with cancer who are eligible for and respond to checkpoint inhibitor immunotherapy drugs. JAMA Netw Open 2:e192535.Yearley JH, Gibson C, Yu N, Moon C, Murphy E, Juco J, Lunceford J, Cheng J, Chow LQM, Seiwert TY, Handa M, Tomassini JE, McClanahan T (2017). PD-L2 expression in human tumors: relevance to anti-PD-1 therapy in cancer. Clin Cancer Res 23:3158–3167.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A194-A194
Author(s):  
Jessica Jana ◽  
Yiyang Wang ◽  
Ashley Menk ◽  
Andrew Frisch ◽  
Greg Delgoffe

BackgroundWhile checkpoint blockade cancer immunotherapies reawaken dormant antitumor immunity, adoptive cell therapies (ACT) bolster an immune response through infusion of expanded tumor infiltrating lymphocytes (TIL), or healthy T cell redirected to tumors via chimeric antigen receptor (CAR), or T cell receptor (TCR) expression. However, the harsh, nutrient depleted tumor microenvironment (TME) creates metabolic barriers for T cell persistence and effector function. We and others have shown that glucose availability is key for T cell effector functions through multiple non-redundant mechanisms. We thus asked whether therapeutic T cells harbor increased sensitivity for glucose and whether this could be mitigated to increase efficacy.MethodsB16 and Pten deficient, Braf mutant melanomas were used as models in C57BL/6 mice. Tumor cell glucose uptake was inhibited using stable expression of shRNA to Slc2a1, encoding Glut1. Glut1 was retrovirally overexpressed in therapeutic, Pmel-1 (gp100-specific) T cells, and phosphomimetic mutations were engineered (S226D) into Glut1, stabilizing cell surface trafficking. Glucose uptake and glycolysis were measured using fluorescent glucose tracers and Seahorse analysis, respectively.ResultsHere we sought to equip glucose sensitive therapeutic T cells with heightened ability to compete for glucose within the TME. Murine therapeutic T cells, expanded in hyperglycemic conditions in vitro, that infiltrate solid tumors compete poorly for glucose tracers compared to endogenous T cells. Knockdown or deletion of Glut1 in tumor cells sensitizes tumors to T cell therapies, but not checkpoint blockade, highlighting a role for glucose competition specifically in ACT. Overexpression of WT Glut1 in therapeutic T cells yields only modest increased glucose competition due to various modes of Glut1 regulation. We thus engineered a cell surface stabilized Glut1 construct. This construct’s competitive advantage manifests robust increases in glucose uptake and glycolytic capacity, leading to superior effector functions even in extremely hypoglycemic conditions. This enhanced effector function manifests in therapeutic efficacy in highly glycolytic melanomas and with heightened competition for glucose tracers, tumor infiltration, and effector function in vivo.ConclusionsOur study suggests that, due to the hyperglycemic conditions of their ex vivo expansion, therapeutic T cells display a distinct metabolic disadvantage when they enter the nutrient poor TME in comparison to their endogenous counterparts. Overexpression of our surface engineered Glut1 in these therapeutic T cells rescues their ability to compete with highly glycolytic tumor cells for glucose, resulting in robust glycolytic metabolism and curative response to immunotherapy for cancer.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A590-A590
Author(s):  
Kristin Anderson ◽  
Yapeng Su ◽  
Madison Burnett ◽  
Breanna Bates ◽  
Magdalia Rodgers Suarez ◽  
...  

BackgroundOver 20,000 women are diagnosed with ovarian cancer annually, and more than half will die within 5 years. This rate has changed little in the last 20 years, highlighting the need for therapy innovation. A promising new strategy with the potential to control tumor growth without toxicity to healthy tissues employs immune T cells engineered to target proteins uniquely overexpressed in tumors. Mesothelin (Msln) contributes to the malignant and invasive phenotype in ovarian cancer, and has limited expression in healthy cells, making it a candidate immunotherapy target in these tumors.MethodsThe ID8VEGF mouse cell line was used to evaluate if T cells engineered to express a mouse Msln-specific high-affinity T cell receptor (TCRMsln) can kill murine ovarian tumor cells in vitro and in vivo. Tumor-bearing mice were treated with TCRMsln T cells plus anti-PD-1, anti-Tim-3 or anti-Lag-3 checkpoint-blocking antibodies administered alone or in combination, ultimately allowing targeting up to three inhibitory receptors simultaneously. Single cell RNA sequencing was used to profile the impact of combination checkpoint blockade on both the engineered T cells and the tumor microenvironment.ResultsIn a disseminated ID8 tumor model, adoptively transferred TCRMsln T cells preferentially accumulated within established tumors, delayed ovarian tumor growth, and significantly prolonged mouse survival. However, our data also revealed that elements in the tumor microenvironment (TME) limited engineered T cell persistence and ability to kill cancer cells. Triple checkpoint blockade, but not single- or double-agent treatment, dramatically increased anti-tumor function by intratumoral TCRMsln T cells. Single cell RNA-sequencing revealed distinct transcriptome changes in engineered T cells and the TME following triple blockade compared to single- and double-agent treatment. Moreover, combining adoptive immunotherapy with triple checkpoint blockade prolonged survival in the cohort of treated tumor-bearing mice, relative to TCRMsln with or without anti-PD1, or double-agent treatments.ConclusionsInhibitory receptor/ligand interactions within the tumor microenvironment can dramatically reduce T cell function, suggesting tumor cells may evade T cell responses by upregulating the ligands for PD-1, Tim-3 and Lag-3. In a model of advanced ovarian cancer, triple checkpoint blockade significantly improved the function of transferred engineered T cells and improved outcomes in mice in a setting in which single checkpoint blockade had no significant activity. The results suggest that T cell therapy with triple blockade, which can ultimately be more safely pursed in a cell intrinsic form through T cell genetic engineering, may overcome barriers to achieving therapeutic efficacy in patients.Ethics ApprovalThe Institutional Animal Care and Use Committees of the University of Washington and the Fred Hutchinson Cancer Research Center approved all animal studies.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A438-A438
Author(s):  
Mara Shainheit ◽  
Devin Champagne ◽  
Gabriella Santone ◽  
Syukri Shukor ◽  
Ece Bicak ◽  
...  

BackgroundATLASTM is a cell-based bioassay that utilizes a cancer patient‘s own monocyte-derived dendritic cells and CD4+ and CD8+ T cells to screen their mutanome and identify neoantigens that elicit robust anti-tumor T cell responses, as well as, deleterious InhibigensTM.1 GEN-009, a personalized vaccine comprised of 4–20 ATLAS-identified neoantigens combined with Hiltonol®, harnesses the power of neoantigen-specific T cells to treat individuals with solid tumors. The safety and efficacy of GEN-009 is being assessed in a phase 1/2a clinical trial (NCT03633110).MethodsA cohort of 15 adults with solid tumors were enrolled in the study. During the screening period, patients received standard of care PD-1-based immunotherapies appropriate for their tumor type. Subsequently, patients were immunized with GEN-009 with additional doses administered at 3, 6, 12, and 24 weeks. Peripheral blood mononuclear cells (PBMCs) were collected at baseline, pre-vaccination (D1), as well as 29, 50, 92, and 176 days post first dose. Vaccine-induced immunogenicity and persistence were assessed by quantifying neoantigen-specific T cell responses in ex vivo and in vitro stimulation dual-analyte fluorospot assays. Polyfunctionality of neoantigen-specific T cells was evaluated by intracellular cytokine staining. Additionally, potential correlations between the ATLAS-identified profile and vaccine-induced immunogenicity were assessed.ResultsGEN-009 augmented T cell responses in 100% of evaluated patients, attributable to vaccine and not checkpoint blockade. Furthermore, neoantigen-induced secretion of IFNγ and/or TNFα by PBMCs, CD4+, and CD8+ T cells was observed in all patients. Responses were primarily from polyfunctional TEM cells and detectable in both CD4+ and CD8+ T cell subsets. Some patients had evidence of epitope spreading. Unique response patterns were observed for each patient with no apparent relationship between tumor types and time to emergence, magnitude or persistence of response. Ex vivo vaccine-induced immune responses were observed as early as 1 month, and in some cases, persisted for 176 days. Clinical efficacy possibly attributable to GEN-009 was observed in several patients, but no correlation has yet been identified with neoantigen number or magnitude of immune response.ConclusionsATLAS empirically identifies stimulatory neoantigens using the patient‘s own immune cells. GEN-009, which is comprised of personalized, ATLAS-identified neoantigens, elicits early, long-lasting and polyfunctional neoantigen-specific CD4+ and CD8+ T cell responses in individuals with advanced cancer. Several patients achieved clinical responses that were possibly attributable to vaccine; efforts are underway to explore T cell correlates of protection. These data support that GEN-009, in combination with checkpoint blockade, represents a unique approach to treat solid tumors.AcknowledgementsWe are grateful to the patients and their families who consented to participate in the GEN-009-101 clinical trial.Trial RegistrationNCT03633110Ethics ApprovalThis study was approved by Western Institutional Review Board, approval number 1-1078861-1. All subjects contributing samples provided signed individual informed consent.ReferenceDeVault V, Starobinets H, Adhikari S, Singh S, Rinaldi S, Classon B, Flechtner J, Lam H. Inhibigens, personal neoantigens that drive suppressive T cell responses, abrogate protection of therapeutic anti-tumor vaccines. J. Immunol 2020; 204(1 Supplement):91.15.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A200-A200
Author(s):  
Yuki Muroyama ◽  
Yuki Muroyama ◽  
Sasikanth Manne ◽  
Alexandar Huang ◽  
Divij Mathew ◽  
...  

BackgroundAlthough immune checkpoint blockade revolutionized cancer therapy, response rates have been mixed in gynecological malignancies. While uterine endometrial cancer with high microsatellite instability (MSIHI) and high tumor mutational burden (TMB) respond robustly to checkpoint blockade, high-grade serous ovarian cancer (HGSOC) with low TMB respond modestly. Currently, there has been no known immune signature or T cell phenotype that predicts clinical response in gynecological tumors.MethodsTo dissect the immune landscape and T cell phenotypes in gynecological cancer patients receiving PD-1 blockade, we used high-dimensional cytometry (flow cytometry and mass cytometry (CyTOF)). We performed longitudinal deep immune profiling of PBMC from patients with recurrent uterine endometrial cancer receiving single-arm nivolumab, and HSGOC patients receiving neoadjuvant nivolumab plus platinum-based chemotherapy prior to debulking surgery.ResultsChemotherapy-resistant MSI-H uterine cancer patients treated with nivolumab had a proliferative T cell response 2–4 weeks post PD-1 blockade, consistent with responses seen in high TMB melanoma and lung cancer. The responding Ki67+ CD8 T cell population was largely CD45RAloCD27hi or CD45RAloCD27lo and highly expressed PD1, CTLA-4, and CD39, consistent with the phenotype of exhausted T cells (TEX). These exhausted-like cells are enriched in responders, whereas early expansion Tregs are enriched in non-responders. Unlike patients with uterine endometrial cancer, patients with TMBlo ovarian cancer did not have a clear proliferative CD8 T cell response after neoadjuvant nivolumab plus chemotherapy treatment, suggesting systemic immune suppression. At baseline, ovarian cancer without recurrence have more terminally differentiated effector-like CD8 T cells, and patients with recurrence have more naive-like cells. Thus, both high and low TMB gynecological tumors have distinct immune landscapes associated with clinical response. Additionally, in MSI-H uterine endometrial cancer patients, the length of time between the prior chemotherapy and the initiation of immunotherapy was negatively correlated with T cell reinvigoration post immunotherapy and clinical response. This suggests the importance of optimize therapeutic timing to maximize the therapeutic efficacy when combining immunotherapy and chemotherapy.ConclusionsCollectively, our immune profiling revealed the distinct immune signatures associated with clinical response to PD-1 blockade in gynecological cancers. Our results also suggest that TMBhi inflamed versus TMBlo cold tumor microenvironment, and timing of chemo/immunotherapy could impact differentiation and functions of T cells.Ethics ApprovalThe study was approved by MSKCC Ethics Board, approval number 17–180 and 17–182.


2021 ◽  
Author(s):  
Juanjuan Yuan ◽  
Ting Cai ◽  
Xiaojun Zheng ◽  
Yangzi Ren ◽  
Jingwen Qi ◽  
...  

AbstractMetabolic regulation has been proven to play a critical role in T cell antitumor immunity. However, cholesterol metabolism as a key component of this regulation remains largely unexplored. Herein, we found that the low-density lipoprotein receptor (LDLR), which has been previously identified as a transporter for cholesterol, plays a pivotal role in regulating CD8+ T cell antitumor activity. Besides the involvement of cholesterol uptake which is mediated by LDLR in T cell priming and clonal expansion, we also found a non-canonical function of LDLR in CD8+ T cells: LDLR interacts with the T-cell receptor (TCR) complex and regulates TCR recycling and signaling, thus facilitating the effector function of cytotoxic T-lymphocytes (CTLs). Furthermore, we found that the tumor microenvironment (TME) downregulates CD8+ T cell LDLR level and TCR signaling via tumor cell-derived proprotein convertase subtilisin/kexin type 9 (PCSK9) which binds to LDLR and prevents the recycling of LDLR and TCR to the plasma membrane thus inhibits the effector function of CTLs. Moreover, genetic deletion or pharmacological inhibition of PCSK9 in tumor cells can enhance the antitumor activity of CD8+ T cells by alleviating the suppressive effect on CD8+ T cells and consequently inhibit tumor progression. While previously established as a hypercholesterolemia target, this study highlights PCSK9/LDLR as a potential target for cancer immunotherapy as well.


Sign in / Sign up

Export Citation Format

Share Document