Abstract 998: Searching for genetic alterations that drive the capability of evading tumor immunosurveillance in lung cancer

Author(s):  
Juan Jose Alburquerque-Bejar ◽  
Maria Saigi ◽  
Eva Pros ◽  
Octavio Romero ◽  
Montse Sanchez-Cespedes
2020 ◽  
Vol 16 (1) ◽  
pp. 5-10
Author(s):  
Adrien Costantini ◽  
Theodoros Katsikas ◽  
Clementine Bostantzoglou

Over the past decade, major breakthroughs in the understanding of lung cancer histology and mutational pathways have radically changed diagnosis and management. More specifically, in non-small cell lung cancer (NSCLC), tumour characterisation has shifted from differentiating based solely on histology to characterisation that includes genetic profiling and mutational status of Epidermal Growth Factor (EGFR), Anaplastic Lymphoma Kinase (ALK), c-ros oncogene 1 (ROS1) and BRAF. These genetic alterations can be targeted by specific drugs that result in improved progression-free survival, as well as higher response rates and are currently standard of care for NSCLC patients harbouring these mutations. In this a narrative, non-systematic review we aim to handpick through the extensive literature and critically present the ground-breaking studies that lead to the institution of tailored treatment options as the standard of care for the main targetable genetic alterations.


Cancers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 3923
Author(s):  
Daniel Di Capua ◽  
Dara Bracken-Clarke ◽  
Karine Ronan ◽  
Anne-Marie Baird ◽  
Stephen Finn

Lung cancer is a leading cause of cancer-related deaths, contributing to 18.4% of cancer deaths globally. Treatment of non-small cell lung carcinoma has seen rapid progression with targeted therapies tailored to specific genetic drivers. However, identifying genetic alterations can be difficult due to lack of tissue, inaccessible tumors and the risk of complications for the patient with serial tissue sampling. The liquid biopsy provides a minimally invasive method which can obtain circulating biomarkers shed from the tumor and could be a safer alternative to tissue biopsy. While tissue biopsy remains the gold standard, liquid biopsies could be very beneficial where serial sampling is required, such as monitoring disease progression or development of resistance mutations to current targeted therapies. Liquid biopsies also have a potential role in identifying patients at risk of relapse post treatment and as a component of future lung cancer screening protocols. Rapid developments have led to multiple platforms for isolating circulating tumor cells (CTCs) and detecting circulating tumor DNA (ctDNA); however, standardization is lacking, especially in lung carcinoma. Additionally, clonal hematopoiesis of uncertain clinical significance must be taken into consideration in genetic sequencing, as it introduces the potential for false positives. Various biomarkers have been investigated in liquid biopsies; however, in this review, we will concentrate on the current use of ctDNA and CTCs, focusing on the clinical relevance, current and possible future applications and limitations of each.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yasuto Yoneshima ◽  
Eiji Iwama ◽  
Shingo Matsumoto ◽  
Taichi Matsubara ◽  
Testuzo Tagawa ◽  
...  

AbstractGenetic alterations underlying the development of lung cancer in individuals with idiopathic pulmonary fibrosis (IPF) have remained unclear. To explore whether genetic alterations in IPF tissue contribute to the development of IPF-associated lung cancer, we here evaluated tumor mutation burden (TMB) and somatic variants in 14 paired IPF and tumor samples from patients with IPF-associated lung adenocarcinoma. We also determined TMB for 22 samples of lung adenocarcinoma from patients without IPF. TMB for IPF-associated lung adenocarcinoma was significantly higher than that for matched IPF tissue (median of 2.94 vs. 1.26 mutations/Mb, P = 0.002). Three and 102 somatic variants were detected in IPF and matched lung adenocarcinoma samples, respectively, with only one pair of specimens sharing one somatic variant. TMB for IPF-associated lung adenocarcinoma was similar to that for lung adenocarcinoma samples with driver mutations (median of 2.94 vs. 2.51 mutations/Mb) and lower than that for lung adenocarcinoma samples without known driver mutations (median of 2.94 vs. 5.03 mutations/Mb, P = 0.130) from patients without IPF. Our findings suggest that not only the accumulation of somatic mutations but other factors such as inflammation and oxidative stress might contribute to the development and progression of lung cancer in patients with IPF.


2021 ◽  
Vol 39 (28_suppl) ◽  
pp. 59-59
Author(s):  
Woojung Lee ◽  
Scott Spencer ◽  
Josh John Carlson ◽  
Tam Dinh ◽  
Victoria Dayer ◽  
...  

59 Background: The use of comprehensive genomic profiling (CGP) in cancer patients could lead to additional enrollment in clinical trials that study novel genetic biomarkers, potentially reducing treatment costs for payers and improving health outcomes for patients. Our objective was to estimate the number of additional clinical trials in which patients with non-small cell lung cancer (NSCLC) could potentially enroll due to the use of CGP vs. a comparator panel of 50 genes or less. Methods: Clinical trials in NSCLC that started between 2015 - 2020 were identified from the Aggregate Analysis of ClinicalTrials.gov (AACT) database. Trials with unknown status or study sites outside the United States only were excluded. We abstracted information on required genetic alterations based on the study eligibility criteria. We calculated the incremental number of trials available to patients due to results generated by CGP (FoundationOne CDx, 324 genes) vs. a commercially available comparator panel that was 50 genes or less (Oncomine Dx Target Test, 23 genes) by phase and calendar year. The additional trials were characterized by disease severity, type of therapy, and setting. Results: Enrollment eligibility was dependent on genetic variant status in 35% (250/709) of all identified NSCLC trials. There were 29 (248 vs. 219) additional clinical trials available to patients through the use of CGP, 12% of all gene-specific trials for NSCLC. We identified 45 uses of genetic markers in the 29 additional clinical trials. The most frequent genetic marker in the incremental trials was microsatellite instability, accounting for 44% of all identified markers (20/45). The incremental number of trials available to patients due to the use of CGP did not vary significantly over time but varied by phase – most of the additional clinical trials were in phase 1 or 2 (28/29, 97%). Most of the incremental trials were in metastatic disease (22/29, 76%) and were conducted in academic or advanced community settings (18/29, 62%). The most frequently studied type of intervention in these studies was targeted monotherapy (8/29, 28%), followed by immuno-monotherapy (7/29, 24%). Conclusions: Clinical trials in NSCLC initiated over the past 5 years have consistently included CGP-specific genes or markers in eligibility criteria. Patients with NSCLC have the potential to benefit from the use of CGP as compared to smaller gene panels through improved access to clinical trials.[Table: see text]


2013 ◽  
Vol 31 (31) ◽  
pp. 3987-3996 ◽  
Author(s):  
Justin F. Gainor ◽  
Alice T. Shaw

The success of tyrosine kinase inhibitors (TKIs) in select patients with non–small-cell lung cancer (NSCLC) has transformed management of the disease, placing new emphasis on understanding the molecular characteristics of tumor specimens. It is now recognized that genetic alterations in the epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) define two unique subtypes of NSCLC that are highly responsive to genotype-directed TKIs. Despite this initial sensitivity, however, the long-term effectiveness of such therapies is universally limited by the development of resistance. Identifying the mechanisms underlying this resistance is an area of intense, ongoing investigation. In this review, we provide an overview of recent experience in the field, focusing on results from preclinical resistance models and studies of patient-derived, TKI-resistant tumor specimens. Although diverse TKI resistance mechanisms have been identified within EGFR-mutant and ALK-positive patients, we highlight common principles of resistance shared between these groups. These include the development of secondary mutations in the kinase target, gene amplification of the primary oncogene, and upregulation of bypass signaling tracts. In EGFR-mutant and ALK-positive patients alike, acquired resistance may also be a dynamic and multifactorial process that may necessitate the use of treatment combinations. We believe that insights into the mechanisms of TKI resistance in patients with EGFR mutations or ALK rearrangements may inform the development of novel treatment strategies in NSCLC, which may also be generalizable to other kinase-driven malignancies.


2019 ◽  
Vol 10 (3) ◽  
pp. 1640-1645
Author(s):  
Saleen Salam Abdulhadi ◽  
Abbas Abdullah Mohammed‎

In the present study, sequencing approach has been adopted for exploring the ‎genetic alteration of sequences for the ubiquitin gene (UBC) in patients of breast and ‎lung cancer and comparing the results with a normal sequence that obtained from NCBI. ‎The aim of this study was to detect for genetic alterations of UBC gene in the breast and ‎lung cancer patients then compare with healthy control subjects, to investigate the ‎association between the mutations at the intron region of the UBC gene and cancer disease, ‎‎40 blood samples were examined from patients with breast and lung cancer aged ranged from (17-65) years, were collected at Al-Amal Hospital of cancer in Baghdad ‎province/Iraq, the period of collecting samples were from October/2018 to January/2019. ‎While twenty-two blood samples from healthy control subjects were collected at ages ‎ranged from(19-59). After DNA extraction, the PCR primer was designed to amplify the ‎region in the UBC gene (part of exon 1 and the whole intron). Here we report the polymorphism of the intron sequence of the UBC gene in Iraqi population as the results of sequencing the PCR amplified products showed three different transition mutation G→A, ‎C→T, T→C in patients with breast cancer were also appeared in healthy control subjects. While nine transition mutations appeared in lung cancer patients, at different locations ‎of the sequence were detected by BLAST tool. ‎


Cancers ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 245 ◽  
Author(s):  
Yosuke Miura ◽  
Noriaki Sunaga

The clinical application of immune checkpoint inhibitors (ICIs) has led to dramatic changes in the treatment strategy for patients with advanced non-small cell lung cancer (NSCLC). Despite the observation of improved overall survival in NSCLC patients treated with ICIs, their efficacy varies greatly among different immune and molecular profiles in tumors. Particularly, the clinical significance of ICIs for oncogene-driven NSCLC has been controversial. In this review, we provide recent clinical and preclinical data focused on the relationship between oncogenic drivers and immunological characteristics and discuss the future direction of immunotherapy in NSCLC patients harboring such genetic alterations


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 9094-9094
Author(s):  
Shingo Matsumoto ◽  
Takaya Ikeda ◽  
Kiyotaka Yoh ◽  
Akira Sugimoto ◽  
Terufumi Kato ◽  
...  

9094 Background: A variety of oncogene drivers have been identified in NSCLC and molecularly-stratified precision medicine has led to improved survival in advanced NSCLC. Next-generation sequencing (NGS)-based testing is utilized to detect actionable gene alterations; however, the TAT of NGS is often too long to translate into clinical decision making. Thus, rapid multi-gene testing alternatives are needed. Methods: A lung cancer genomic screening project (LC-SCRUM-Asia) capturing clinical outcome was established in 2013 to identify patients with oncogene drivers and to support the development of novel targeted therapies. Since February 2013 to May 2019 (LC-SCRUM-Asia 1st-phase), single gene testing and/or a targeted NGS assay, Oncomine Comprehensive Assay (OCA), were used for the genomic screening. Since June 2019 to December 2020 (2nd-phase), a multi-gene PCR assay (Amoy 9-in-1 test) and a rapid NGS assay (Genexus/Oncomine Precision Assay [OPA]) were also implemented as rapid multi-gene testing. Results: A total of 10667 Japanese NSCLC patients, including 6826 in the 1st-phase and 3841 in the 2nd-phase, were enrolled in the LC-SCRUM-Asia. Success rate for OCA: 93%, for 9-in-1 test: 98%, for Genexus/OPA: 96%. Median TAT for OCA: 21 days, for 9-in-1 test: 3 days, for Genexus/OPA: 4 days. The frequencies of genetic alterations detected in the 1st-/2nd-phase were EGFR: 17/24%, KRAS: 15/16%, HER2 ex20ins: 4/3%, ALK fusions: 3/3%, RET fusions: 3/2%, ROS1 fusions: 3/2%, MET ex14skip: 2/2%, BRAF V600E: 1/1%, NRG1 fusions: 0/0.2% and NTRK3 fusions: 0.05/0.04%. Overall percent agreement of 9-in-1 test compared with OCA for EGFR/KRAS/HER2/BRAF/MET/ALK/ROS1/RET/NTRK3 alterations was 98%, and that of OPA compared with OCA was 95%. The rate of patients who received targeted therapies as 1st-line treatment was significantly elevated in the 2nd-phase compared with the 1st-phase (510/3841 [13%] vs. 567/6826 [8%], p < 0.001). Through the genomic screening, 1410 (37%) and 1269 (18%) candidate patients for clinical trials of KRAS, HER2, BRAF, MET, ALK, ROS1, RET or TRK-targeted drugs were identified in the 2nd-phase and in the 1st-phase, respectively. The rate of patients who were actually enrolled into the genotype-matched clinical trials were also significantly higher in the 2nd-phase than in the 1st-phase (222 [6%] vs. 186 [3%], p < 0.001). In 1st-line treatments for advanced NSCLC patients, the median progression-free survival was 8.5 months (95% CI, 7.7−9.4) in the 2nd-phase (n = 1839) versus 6.1 months (95% CI, 5.9−6.3) in the 1st-phase (n = 4262) (p < 0.001). Conclusions: Both the 9-in-1 test and Genexus/OPA had short TATs (3−4 days), high success rates (96−98%) and good concordance (95−98%) compared with another NGS assay (OCA). These rapid multi-gene assays highly contributed to enabling precision medicine and the development of targeted therapies for advanced NSCLC.


Cancers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1141 ◽  
Author(s):  
Anastasios Gkountakos ◽  
Giulia Sartori ◽  
Italia Falcone ◽  
Geny Piro ◽  
Ludovica Ciuffreda ◽  
...  

Lung cancer is the most common malignancy and cause of cancer deaths worldwide, owing to the dismal prognosis for most affected patients. Phosphatase and tensin homolog deleted in chromosome 10 (PTEN) acts as a powerful tumor suppressor gene and even partial reduction of its levels increases cancer susceptibility. While the most validated anti-oncogenic duty of PTEN is the negative regulation of the PI3K/mTOR/Akt oncogenic signaling pathway, further tumor suppressor functions, such as chromosomal integrity and DNA repair have been reported. PTEN protein loss is a frequent event in lung cancer, but genetic alterations are not equally detected. It has been demonstrated that its expression is regulated at multiple genetic and epigenetic levels and deeper delineation of these mechanisms might provide fertile ground for upgrading lung cancer therapeutics. Today, PTEN expression is usually determined by immunohistochemistry and low protein levels have been associated with decreased survival in lung cancer. Moreover, available data involve PTEN mutations and loss of activity with resistance to targeted treatments and immunotherapy. This review discusses the current knowledge about PTEN status in lung cancer, highlighting the prevalence of its alterations in the disease, the regulatory mechanisms and the implications of PTEN on available treatment options.


Sign in / Sign up

Export Citation Format

Share Document