Abstract B12: Immune checkpoint blockade to improve T cell infiltration and function in colorectal cancer

Author(s):  
Krithika N. Kodumudi ◽  
James Charles ◽  
Carrie Luu ◽  
John Mullinax ◽  
Julie Li ◽  
...  
2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Jiayu Wang ◽  
Hongya Wu ◽  
Yanjun Chen ◽  
Jinghan Zhu ◽  
Linqing Sun ◽  
...  

AbstractNegative immune checkpoint blockade immunotherapy has shown potential for multiple malignancies including colorectal cancer (CRC). B7-H5, a novel negative immune checkpoint regulator, is highly expressed in tumor tissues and promotes tumor immune escape. However, the clinical significance of B7-H5 expression in CRC and the role of B7-H5 in the tumor microenvironment (TME) has not been fully clarified. In this study, we observed that high B7-H5 expression in CRC tissues was significantly correlated with the lymph node involvement, AJCC stage, and survival of CRC patients. A significant inverse correlation was also observed between B7-H5 expression and CD8+ T-cell infiltration in CRC tissues. Kaplan−Meier analysis showed that patients with high B7-H5 expression and low CD8+ T-cell infiltration had the worst prognosis in our cohort of CRC patients. Remarkably, both high B7-H5 expression and low CD8+ T infiltration were risk factors for overall survival. Additionally, B7-H5 blockade using a B7-H5 monoclonal antibody (B7-H5 mAb) effectively suppressed the growth of MC38 colon cancer tumors by enhancing the infiltration and Granzyme B production of CD8+ T cells. Importantly, the depletion of CD8+ T cells obviously abolished the antitumor effect of B7-H5 blockade in the MC38 tumors. In sum, our findings suggest that B7-H5 may be a valuably prognostic marker for CRC and a potential target for CRC immunotherapy.


2018 ◽  
Vol 26 (11) ◽  
pp. 2567-2579 ◽  
Author(s):  
Shanthi Ganesh ◽  
Xue Shui ◽  
Kevin P. Craig ◽  
Jihye Park ◽  
Weimin Wang ◽  
...  

2017 ◽  
Vol 35 (15_suppl) ◽  
pp. e14608-e14608 ◽  
Author(s):  
Shanthi Ganesh ◽  
Serena Shui ◽  
Cheng Lai ◽  
Hank Dudek ◽  
Weimin Wang ◽  
...  

e14608 Background: Recent research suggests an important role for Wnt/β-catenin signaling in mediating cancer immune evasion and resistance to immune checkpoint therapy. The mechnism is believed to involve blocking of specific cytokines which trigger immune cell recruitment to the tumor, resulting in the phenomenon of T-cell exclusion and rendering the tumor to a non-inflamed state. Inhibition of β-catenin may be an effective strategy for increasing the low response rate to these effective medicines in numerous cancer populations. DCR-BCAT is an advanced preclinical development candidate that has a potent and specific chemically-optimized RNA interference (RNAi) trigger targeting CTNNB1, the gene that encodes β-catenin, formulated in a tumor-selective lipid nanoparticle. Methods: Syngeneic murine models and transgenic MMTV-Wnt1 mouse models were used in this study. In both cases, a sequential dose regimen was employed where, in each dosing cycle, animals received DCR-BCAT, followed by a combination of anti-PD-1 and anti-CTLA-4 on subsequent days. Pharmacodynamic endpoints included CTNNB1 (β-catenin), CCL4, PD-1, PD-L1 mRNA measurement by quantitative PCR, as well as β-catenin, perforin, and granzyme B immunohistochemistry. Results: In syngeneic models, β-catenin inhibition with DCR-BCAT significantly improved the T-cell infiltration. The combination of DCR-BCAT and immune checkpoint blockade yielded significant tumor growth inhibition compared to monotherapy in B16F10, 4T1, Neuro2A and Renca tumors. The combination therapy was associated with high levels of granzyme B and perforin, strongly suggesting that the mechanism of sensitization to checkpoint therapy was a sharp increase in T-cell mediated cytotoxicity. Finally, when DCR-BCAT was combined with anti-PD-1/CTLA-4 antibodies in mice which develop spontaneous Wnt-driven mammary tumors, checkpoint therapy potentiation yielded complete tumor regressions. Conclusions: These data offer proof-of-concept for conversion of non-inflamed tumors to inflamed tumors by β-catenin inhibition, and support clinical evaluation of this combination approach using a first-in-class RNAi-based agent.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Robert J. Torphy ◽  
Yi Sun ◽  
Ronggui Lin ◽  
Alayna Caffrey-Carr ◽  
Yuki Fujiwara ◽  
...  

AbstractFor many solid tumors, immune checkpoint blockade therapy has become first line treatment, yet a large proportion of patients with immunologically cold tumors do not benefit due to the paucity of tumor infiltrating lymphocytes. Here we show that the orphan G Protein-Coupled Receptor 182 (GPR182) contributes to immunotherapy resistance in cancer via scavenging chemokines that are important for lymphocyte recruitment to tumors. GPR182 is primarily upregulated in melanoma-associated lymphatic endothelial cells (LECs) during tumorigenesis, and this atypical chemokine receptor endocytoses chemokines promiscuously. In GPR182-deficient mice, T cell infiltration into transplanted melanomas increases, leading to enhanced effector T cell function and improved antitumor immunity. Ablation of GPR182 leads to increased intratumoral concentrations of multiple chemokines and thereby sensitizes poorly immunogenic tumors to immune checkpoint blockade and adoptive cellular therapies. CXCR3 blockade reverses the improved antitumor immunity and T cell infiltration characteristic of GPR182-deficient mice. Our study thus identifies GPR182 as an upstream regulator of the CXCL9/CXCL10/CXCR3 axis that limits antitumor immunity and as a potential therapeutic target in immunologically cold tumors.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii107-ii107
Author(s):  
Fan Yang ◽  
Steven Brem ◽  
Yi Fan

Abstract Glioblastoma (GBM) is refractory to current T cell-based immunotherapies such as checkpoint blockade. GBM is characterized by extensive infiltration of immunosuppressive macrophages (Mφs) that contribute to the treatment resistance. Here we develop a dual-targeting strategy to synergistically activate tumor-associated Mφs, which overcomes GBM resistance to therapeutic blockade of the PD1 and CTLA4 checkpoints. Consistent with a previously established role of IL-6 in alternative Mφ polarization, we show that targeting IL-6 by genetic ablation or pharmacological inhibition moderately improves T cell infiltration and enhances animal survival in a genetically engineered mouse GBM model. However, IL-6 inhibition does not synergize PD-1 and CTLA-4 blockade in GBM. Interestingly, we reveal that anti-IL-6 therapy reduces CD40 expression in GBM-associated Mφs. Our transcriptome analysis identifies a Stat3/HIF-1a-mediated axis, through which IL-6 regulates CD40 expression in Mφs. Finally, we show that combination of IL-6 blockade with CD40 stimulation robustly reverses Mφ-mediated tumor immunosuppression, enhances T cell infiltration, and sensitizes GBM to PD-1 and CTLA-4 blockade treatment, cumulating in inhibited tumor growth and extended animal survival. These findings illustrate a cellular mechanism that regulates Mφ-mediated tumor immunity, and suggest that dual-targeting IL-6 and CD40 may offer exciting opportunities for improving immunotherapy against GBM.


2021 ◽  
Author(s):  
Shirin Lak ◽  
Valérie Janelle ◽  
Anissa Djedid ◽  
Gabrielle Boudreau ◽  
Ann Brasey ◽  
...  

AbstractBackgroundThe stimulation and expansion of antigen-specific T cells ex vivo enables the targeting of a multitude of cancer antigens. However, clinical scale T-cell expansion from rare precursors requires repeated stimulations ex vivo leading to T-cell terminal effector differentiation and exhaustion that adversely impact therapeutic potential. We leveraged immune checkpoint blockade relevant to antigen-specific CD8+ human T cells to improve the expansion and function of T cells targeting clinically relevant antigens.MethodsA clinically-compliant protocol relying on peptide-pulsed monocyte-derived dendritic cells and cytokines was used to expand antigen-specific CD8+ targeting the oncogenic Epstein-Barr virus (EBV) and the tumor associated antigen (TAA) Wilms Tumor 1 (WT1) protein. The effects of antibody-mediated blockade of immune checkpoints applied to the cultures (T-cell expansion, phenotypes and function) were assessed at various time points. Genomic studies including single cell RNA (scRNA) sequencing and T-cell receptor sequencing were performed on EBV-specific T cells to inform about the impact of immune checkpoint blockade on the clonal distribution and gene expression of the expanded T cells.ResultsSeveral immune checkpoints were expressed early by ex vivo expanded antigen-specific CD8+ T cells, including PD-1 and TIM-3 with co-expression matching evidence of T-cell dysfunction as the cultures progressed. The introduction of anti-PD-L1 (expressed by the dendritic cells) and anti-TIM-3 antibodies in combination (but not individually) to the culture led to markedly improved antigen-specific T-cell expansion based on cell counts, fluorescent multimer staining and functional tests. This was not associated with evidence of T-cell dysfunction when compared to T cells expanded without immune checkpoint blockade. Genomics studies largely confirmed these results, showing that double blockade does not impart specific transcriptional programs or patterns on TCR repertoires. However, our data indicate that combined blockade may nonetheless alter gene expression in a minority of clonotypes and have donor-specific impacts.ConclusionsThe manufacturing of antigen-specific CD8+ T cells can be improved in terms of yield and functionality using blockade of TIM-3 and the PD-L1/PD-1 axis in combination. Overcoming the deleterious effects of multiple antigenic stimulations through PD-L1/TIM-3 blockade is a readily applicable approach for several adoptive-immunotherapy strategies.


Cancers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 968
Author(s):  
Lucas A. Horn ◽  
Kristen Fousek ◽  
Duane H. Hamilton ◽  
James W. Hodge ◽  
John A. Zebala ◽  
...  

Resistance to immune checkpoint blockade therapy has spurred the development of novel combinations of drugs tailored to specific cancer types, including non-inflamed tumors with low T-cell infiltration. Cancer vaccines can potentially be utilized as part of these combination immunotherapies to enhance antitumor efficacy through the expansion of tumor-reactive T cells. Utilizing murine models of colon and mammary carcinoma, here we investigated the effect of adding a recombinant adenovirus-based vaccine targeting tumor-associated antigens with an IL-15 super agonist adjuvant to a multimodal regimen consisting of a bifunctional anti-PD-L1/TGF-βRII agent along with a CXCR1/2 inhibitor. We demonstrate that the addition of vaccine induced a greater tumor infiltration with T cells highly positive for markers of proliferation and cytotoxicity. In addition to this enhancement of cytotoxic T cells, combination therapy showed a restructured tumor microenvironment with reduced Tregs and CD11b+Ly6G+ myeloid cells. Tumor-infiltrating immune cells exhibited an upregulation of gene signatures characteristic of a Th1 response and presented with a more diverse T-cell receptor (TCR) repertoire. These results provide the rationale for the addition of vaccine-to-immune checkpoint blockade-based therapies being tested in the clinic.


Sign in / Sign up

Export Citation Format

Share Document