scholarly journals SI113, a Specific Inhibitor of the Sgk1 Kinase Activity that Counteracts Cancer Cell Proliferation

2015 ◽  
Vol 35 (5) ◽  
pp. 2006-2018 ◽  
Author(s):  
Lucia D''Antona ◽  
Rosario Amato ◽  
Cristina Talarico ◽  
Francesco Ortuso ◽  
Miranda Menniti ◽  
...  

Background/Aims: Published observations on serum and glucocorticoid regulated kinase 1 (Sgk1) knockout murine models and Sgk1-specific RNA silencing in the RKO human colon carcinoma cell line point to this kinase as a central player in colon carcinogenesis and in resistance to taxanes. Methods: By in vitro kinase activity inhibition assays, cell cycle and viability analysis in human cancer model systems, we describe the biologic effects of a recently identified kinase inhibitor, SI113, characterized by a substituted pyrazolo[3,4-d]pyrimidine scaffold, that shows specificity for Sgk1. Results: SI113 was able to inhibit in vitro cell growth in cancer cells derived from tumors with different origins. In RKO cells, this kinase inhibitor blocked insulin-dependent phosphorylation of the Sgk1 substrate Mdm2, the main regulator of p53 protein stability, and induced necrosis and apoptosis when used as a single agent. Finally, SI113 potentiated the effects of paclitaxel on cell viability. Conclusion: Since SI113 appears to be effective in inducing cell death in RKO cells, potentiating paclitaxel sensitivity, we believe that this new molecule could be efficiently employed, alone or in combination with paclitaxel, in colon cancer chemotherapy.

2018 ◽  
Vol 115 (44) ◽  
pp. E10505-E10514 ◽  
Author(s):  
Vijay Pandey ◽  
Baocheng Wang ◽  
Chakrabhavi Dhananjaya Mohan ◽  
Ainiah Rushdiana Raquib ◽  
Shobith Rangappa ◽  
...  

Human BCL-2–associated death promoter (hBAD) is an apoptosis-regulatory protein mediating survival signals to carcinoma cells upon phosphorylation of Ser99, among other residues. Herein, we screened multiple small-molecule databases queried in a Laplacian-modified naive Bayesian-based cheminformatics platform and identified a Petasis reaction product as a site-specific inhibitor for hBAD phosphorylation. Based on apoptotic efficacy against mammary carcinoma cells, N-cyclopentyl-3-((4-(2,3-dichlorophenyl) piperazin-1-yl) (2-hydroxyphenyl) methyl) benzamide (NPB) was identified as a potential lead compound. In vitro biochemical analyses demonstrated that NPB inhibited the phosphorylation of hBAD specifically on Ser99. NPB was observed to exert this effect independently of AKT and other kinase activities despite the demonstration of AKT-mediated BAD-Ser99 phosphorylation. Using a structure-based bioinformatics platform, we observed that NPB exhibited predicted interactions with hBAD in silico and verified the same by direct binding kinetics. NPB reduced phosphorylation of BAD-Ser99 and enhanced caspase 3/7 activity with associated loss of cell viability in various human cancer cell lines derived from mammary, endometrial, ovarian, hepatocellular, colon, prostatic, and pancreatic carcinoma. Furthermore, by use of a xenograft model, it was observed that NPB, as a single agent, markedly diminished BAD phosphorylation in tumor tissue and significantly inhibited tumor growth. Similar doses of NPB utilized in acute toxicity studies in mice did not exhibit significant effects. Hence, we report a site-specific inhibitor of BAD phosphorylation with efficacy in tumor models.


2021 ◽  
Author(s):  
Ameneh Shokati ◽  
Masoud Soleimani ◽  
Saeid Abroun

Abstract Background: The epidemiological studies indicated that colorectal cancer is one of the most common types of cancer in the world and is considered a leading cause of cancer-related death. The present study aimed to investigate the inhibitory effect of lactobacillus acidophilus supernatant (LAS) and lactobacillus rhamnosus supernatant (LRS) on the growth and invasiveness of the human colon carcinoma cell line (Caco2) in-vitro. Methods: In this experimental study, the anti-proliferative activity and anti-invasion potential of LAS and LRS were determined by MTT and transwell chambers assays, respectively. The expression of mitochondrial membrane potential-9 (MMP-9) and matrix metalloproteinase-12 (MMP12) genes were analyzed by real-time PCR.Results: The results indicated that supernatants of these two lactobacilli had cytotoxic effects on Caco-2 cells at a concentration of 25% v/v and higher. Thus, the minimum concentrations (25% V/V) of supernatants were chosen for further experiments. LAS and LRS could significantly suppress the invasiveness of Caco-2 cells. Also, the expression of MMP12 was significantly increased in Caco-2 cells when treated with LAS, whereas LRS had no significant effect on the invasive capacity and the gene expression levels of MMP12. The expression of MMP-9 was statistically decreased in Caco2 cells treated with LAS and LRS (P<0.00001).Conclusion: In general, it was shown that LAS and LRS exert anti-cancer activity against the growth, invasion, and metastasis of Caco2 cells in-vitro. It seems that these two bacteria could be used as prophylactic and therapeutic agents for the prevention and treatment of colorectal cancer.


1984 ◽  
Vol 4 (2) ◽  
pp. 232-239
Author(s):  
F Van Roy ◽  
L Fransen ◽  
W Fiers

Immune complex kinase assays in the simian virus 40 system were performed by incubation of immunoprecipitates containing tumor antigens with [gamma-32P]ATP, followed by analysis of any phosphoacceptor proteins. These assays yielded mainly the viral large T-antigen and, in particular, the associated cellular p53 as endogenous substrates. The nature of these substrates was confirmed by proteolysis techniques. Under specific conditions, casein could be used as an exogenous substrate as well. The kinase reactions showed preference for ATP and MgCl2 instead of GTP or MnCl2. Both phosphoserine and phosphothreonine, but in no case phosphotyrosine, were detected after an immune complex kinase reaction. Apparently, several in vivo phosphorylation sites were recognized in vitro in both large T-antigen and p53, but the presence of some artifactual sites could not be completely excluded. Although contaminating kinases were detectable in the immune complexes, at least the p53 molecules were phosphorylated in vitro in a more specific way. This followed from several characteristics of the immune complex kinase reactions and especially from the strong inhibition of p53 phosphorylation by two anti-large-T monoclonal antibodies. It was shown that large T-antigen showed associated kinase activity, although none of our results could unambiguously demonstrate an intrinsic kinase activity of this protein. Finally, anti-p53 monoclonal antibodies only slightly affected in vitro phosphorylation reactions, whereas a p53 molecule from a simian virus 40-free, chemically transformed human cell line was not phosphorylated in vitro under any condition tested. Thus, it is highly unlikely that the p53 molecule per se carries intrinsic or even associated kinase activities.


Blood ◽  
2000 ◽  
Vol 96 (9) ◽  
pp. 3195-3199 ◽  
Author(s):  
J. Tyler Thiesing ◽  
Sayuri Ohno-Jones ◽  
Kathryn S. Kolibaba ◽  
Brian J. Druker

Abstract Chronic myelogenous leukemia (CML), a malignancy of a hematopoietic stem cell, is caused by the Bcr-Abl tyrosine kinase. STI571(formerly CGP 57148B), an Abl tyrosine kinase inhibitor, has specific in vitro antileukemic activity against Bcr-Abl–positive cells and is currently in Phase II clinical trials. As it is likely that resistance to a single agent would be observed, combinations of STI571 with other antileukemic agents have been evaluated for activity against Bcr-Abl–positive cell lines and in colony-forming assays in vitro. The specific antileukemic agents tested included several agents currently used for the treatment of CML: interferon-alpha (IFN), hydroxyurea (HU), daunorubicin (DNR), and cytosine arabinoside (Ara-C). In proliferation assays that use Bcr-Abl–expressing cells lines, the combination of STI571 with IFN, DNR, and Ara-C showed additive or synergistic effects, whereas the combination of STI571 and HU demonstrated antagonistic effects. However, in colony-forming assays that use CML patient samples, all combinations showed increased antiproliferative effects as compared with STI571 alone. These data indicate that combinations of STI571 with IFN, DNR, or Ara-C may be more useful than STI571 alone in the treatment of CML and suggest consideration of clinical trials of these combinations.


2020 ◽  
Vol 117 (48) ◽  
pp. 30670-30678
Author(s):  
Olivera Grbovic-Huezo ◽  
Kenneth L. Pitter ◽  
Nicolas Lecomte ◽  
Joseph Saglimbeni ◽  
Gokce Askan ◽  
...  

Pancreatic ductal adenocarcinoma (PDAC) is typically diagnosed at an advanced stage, which limits surgical options and portends a dismal prognosis. Current oncologic PDAC therapies confer marginal benefit and, thus, a significant unmet clinical need exists for new therapeutic strategies. To identify effective PDAC therapies, we leveraged a syngeneic orthotopic PDAC transplant mouse model to perform a large-scale, in vivo screen of 16 single-agent and 41 two-drug targeted therapy combinations in mice. Among 57 drug conditions screened, combined inhibition of heat shock protein (Hsp)-90 and MEK was found to produce robust suppression of tumor growth, leading to an 80% increase in the survival of PDAC-bearing mice with no significant toxicity. Mechanistically, we observed that single-agent MEK inhibition led to compensatory activation of resistance pathways, including components of the PI3K/AKT/mTOR signaling axis, which was overcome with the addition of HSP90 inhibition. The combination of HSP90(i) + MEK(i) was also active in vitro in established human PDAC cell lines and in vivo in patient-derived organoid PDAC transplant models. These findings encourage the clinical development of HSP90(i) + MEK(i) combination therapy and highlight the power of clinically relevant in vivo model systems for identifying cancer therapies.


1984 ◽  
Vol 4 (2) ◽  
pp. 232-239 ◽  
Author(s):  
F Van Roy ◽  
L Fransen ◽  
W Fiers

Immune complex kinase assays in the simian virus 40 system were performed by incubation of immunoprecipitates containing tumor antigens with [gamma-32P]ATP, followed by analysis of any phosphoacceptor proteins. These assays yielded mainly the viral large T-antigen and, in particular, the associated cellular p53 as endogenous substrates. The nature of these substrates was confirmed by proteolysis techniques. Under specific conditions, casein could be used as an exogenous substrate as well. The kinase reactions showed preference for ATP and MgCl2 instead of GTP or MnCl2. Both phosphoserine and phosphothreonine, but in no case phosphotyrosine, were detected after an immune complex kinase reaction. Apparently, several in vivo phosphorylation sites were recognized in vitro in both large T-antigen and p53, but the presence of some artifactual sites could not be completely excluded. Although contaminating kinases were detectable in the immune complexes, at least the p53 molecules were phosphorylated in vitro in a more specific way. This followed from several characteristics of the immune complex kinase reactions and especially from the strong inhibition of p53 phosphorylation by two anti-large-T monoclonal antibodies. It was shown that large T-antigen showed associated kinase activity, although none of our results could unambiguously demonstrate an intrinsic kinase activity of this protein. Finally, anti-p53 monoclonal antibodies only slightly affected in vitro phosphorylation reactions, whereas a p53 molecule from a simian virus 40-free, chemically transformed human cell line was not phosphorylated in vitro under any condition tested. Thus, it is highly unlikely that the p53 molecule per se carries intrinsic or even associated kinase activities.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3448-3448
Author(s):  
Amit Verma ◽  
Tony A. Navas ◽  
Jing Ying ◽  
Aaron N. Nguyen ◽  
Perry Pahanish ◽  
...  

Abstract Transforming Growth Factor β (TGF-β) is a myelosuppressive cytokine that has been implicated in the ineffective hematopoiesis seen in myelodysplastic syndromes (MDS). Overactivation of TGF-β signaling in this disease was demonstrated immunohistochemically by significantly higher nuclear SMAD2 phosphorylation observed in 20 MDS bone marrows when compared with 7 non MDS anemic controls (P &lt; 0.0001, 2 Tailed T Test, Image Pro Plus software). This data along with high levels of membrane-bound and plasma TGF-β observed in MDS patients in previous studies support the development of therapeutics targeting the TGF-β signaling pathways in this disease. SD-208 is a novel, potent and specific inhibitor of TGF-β Receptor I (TGFβ-RI) kinase. We demonstrate that SD-208 blocks the phosphorylation of SMAD2 in hematopoietic progenitors which are at the colony forming unit-erythroid (CFU-E) stage of differentiation. SD-208 also abrogates the G0/G1 cell cycle arrest induced by TGF-β in bone marrow progenitors. SD-208 treatment leads to reversal of the myelosuppressive effects of TGF-β on erythroid and myeloid colony formation from primary human CD34+ cells. Selectivity of SD-208 in inhibiting TGF-β-mediated effects on hematopoiesis was supported by similar results observed with siRNAs targeting SMAD2, a major component of the TGF-b signaling pathway. Finally, the efficacy of SD-208 in MDS was evaluated by treating bone marrow mononuclear cells from 15 patients with early low grade MDS. SD-208 treatment led to dose-dependent increases in erythroid and myeloid colonies after 14 days of in vitro culture. The effect was most notable in patients with high levels of activated SMAD-2, as assessed by immunohistochemical staining of bone marrow biopsies. Stimulation of hematopoiesis in MDS-derived marrow culture by SD-208 demonstrates a novel concept and potential therapeutic role for TGFβ-RI inhibition in this disease. Supported by VISN-17 grant, Harris Methodist Foundation Grant and ASCO YIA to AV


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 535-535 ◽  
Author(s):  
Thomas O’Hare ◽  
Christopher A. Eide ◽  
Jeffrey W. Tyner ◽  
Amie S. Corbin ◽  
Matthew J. Wong ◽  
...  

Abstract Overview: Bcr-AblT315I is detected in the majority of CML patients who relapse after dasatinib- or nilotinib-based second-line Bcr-Abl kinase inhibitor therapy. SGX70393, an azapyridine-based Abl kinase inhibitor, is effective against Bcr-Abl and Bcr-AblT315I at low nanomolar concentrations in vitro and in cell lines. Here, we comprehensively profiled SGX70393 against native and mutant Bcr-Abl in vitro and in vivo. We also used a cell-based mutagenesis screen to evaluate the resistance profile of SGX70393 alone and in combination with imatinib, nilotinib, or dasatinib. Methods: We assessed colony formation in the presence of SGX70393 by murine bone marrow infected with retroviruses for expression of Bcr-Abl, Bcr-AblT315I, or a variety of other mutants. Toxicity was tested in clonogenic assays of normal bone marrow. SGX70393 effects on cellular tyrosine phosphorylation were measured by immunoblot and FACS in primary Bcr-AblT315I cells isolated from patients with CML or Ph+ B-ALL. In vivo activity was evaluated in a xenograft model using Ba/F3 cells expressing Bcr-AblT315I. Lastly, the resistance profile of SGX70393 was evaluated alone and in dual combinations with imatinib, nilotinib, or dasatinib in a cell-based mutagenesis assay. Results: Colony formation by murine bone marrow cells expressing Bcr-AblT315I (IC50: 180 nM) was reduced by SGX70393 in a dose dependent manner, while no toxicity was observed in colony forming assays of normal human or murine mononuclear cells at concentrations up to 2 μM. Ex vivo exposure of human Bcr-AblT315I mononuclear cells to SGX70393 decreased CrkL phosphorylation, while imatinib, nilotinib, or dasatinib had no effect. SGX70393 inhibited Bcr-AblT315I-driven tumor growth in mice and this was correlated with reduced levels of pCrkL in tumor tissue, while imatinib was ineffective. A cell-based mutagenesis screen revealed a profile of resistant clones confined to four p-loop residues and position 317. SGX70393 in combination with imatinib contracted the spectrum of resistant mutations relative to either single agent, though outgrowth could not be completely suppressed. Combining SGX70393 with low concentrations of nilotinib or dasatinib narrowed the resistance profile still further (residues 248 and 255 for nilotinib; 317 for dasatinib) and, with clinically achievable doses of either second drug, completely abrogated emergence of resistant subclones. Conclusions: SGX70393, a potent inhibitor of Bcr-AblT315I, exhibits a resistance profile centered around the p-loop and residue 317 of Bcr-Abl. Remarkably, in combination with nilotinib or dasatinib, outgrowth of resistant clones is completely suppressed. Single-agent therapy with an effective T315I inhibitor may provide a viable option for patients who relapse with Bcr-AblT315I. However, as a broader spectrum of mutations accounts for imatinib resistance, patients with acquired dasatinib or nilotinib resistance may continue to harbor residual mutant clones other than T315I. Thus, the full clinical potential of SGX70393 may be realized in combinations with a second Abl kinase inhibitor. Our findings provide the first demonstration that Abl kinase inhibitor combinations that include a T315I-targeted component such as SGX70393 have the potential to pre-empt Bcr-Abl-dependent resistance.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3660-3660 ◽  
Author(s):  
Xiaojing Wang ◽  
Anthony L. Sinn ◽  
Attaya Suvannasankha ◽  
Colin D. Crean ◽  
Li Chen ◽  
...  

Abstract ENMD-2076 is a novel, orally-active molecule that has been shown to have significant activity against Aurora A kinase as well as multiple receptor tyrosine kinases (RTK). We investigated the single agent activity of ENMD-2076 against MM cells in vitro and in vivo, and in combination with lenalidomide. ENMD-2076 free base showed significant cytotoxicity against MM cells with a mean LC50 of 3.84±0.86 μM at 48 hours in vitro. Cytotoxicity was associated with cleavage of caspase 3, 8, 9 and PARP, and loss of mitochondrial membrane potential as early as 6 hours. ENMD-2076 free base inhibited c-kit, FGFR-1, 3 and VEGFR1 and subsequently inhibition of downstream targets phosphorylated (p)-BAD, p-Foxo1a and p-GSK-3β was observed at 6 hours. NOD/SCID mice implanted with H929 human plasmacytoma xenografts and treated for 30 days with 50, 100, 200mg/kg/d ENMD-2076 showed a dose-dependent inhibition of tumor growth (Figure 1), with minimal toxicity as assessed by the stable weight of treated animals. Immunohistochemical staining of tumors from sacrificed animals showed significant reduction in Ki67 at all dose levels of treatment compared to control tumors. An increase in cleaved caspase-3 was observed on Western blot from the lysates of H929 tumors obtained from treated animals. ENMD-2076 free base also showed synergistic cytotoxic activity when combined with lenalidomide against H929, MM1.R and MM1.S cells as assessed by MTT assay and Annexin-V/PI staining. Using the Chou-Talalay method, the combination indices (CI) were < 1 for all three cell lines across a range of concentrations of ENMD-2076 free base (0.25–1.0 μM) plus lenalidomide (2.5–10 μM) indicating synergistic activity (CI=0.362 H929; CI=0.315 MM1.R; CI=0.415 MM1.S). Our results provide rationale for the investigation of ENMD-2076 alone and in combination with lenalidomide in patients with multiple myeloma. Figure Figure


Sign in / Sign up

Export Citation Format

Share Document