Effects of Antibiotics on Gut Microbiota

2016 ◽  
Vol 34 (3) ◽  
pp. 260-268 ◽  
Author(s):  
Kathleen Lange ◽  
Martin Buerger ◽  
Andreas Stallmach ◽  
Tony Bruns

The gut microbiota influences essential human functions including digestion, energy metabolism, and inflammation by modulating multiple endocrine, neural, and immune pathways of the host. Its composition and complexity varies markedly across individuals and across different sites of the gut, but provides a certain level of resilience against external perturbation. Short-term antibiotic treatment is able to shift the gut microbiota to long-term alternative dysbiotic states, which may promote the development and aggravation of disease. Common features of post-antibiotic dysbiosis include a loss of taxonomic and functional diversity combined with reduced colonization resistance against invading pathogens, which harbors the danger of antimicrobial resistance. This review summarizes the antibiotic-related changes of the gut microbiota and potential consequences in health and disease.

Nutrients ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2862 ◽  
Author(s):  
Emily R Leeming ◽  
Abigail J Johnson ◽  
Tim D Spector ◽  
Caroline I Le Roy

The human gut is inhabited by trillions of microorganisms composing a dynamic ecosystem implicated in health and disease. The composition of the gut microbiota is unique to each individual and tends to remain relatively stable throughout life, yet daily transient fluctuations are observed. Diet is a key modifiable factor influencing the composition of the gut microbiota, indicating the potential for therapeutic dietary strategies to manipulate microbial diversity, composition, and stability. While diet can induce a shift in the gut microbiota, these changes appear to be temporary. Whether prolonged dietary changes can induce permanent alterations in the gut microbiota is unknown, mainly due to a lack of long-term human dietary interventions, or long-term follow-ups of short-term dietary interventions. It is possible that habitual diets have a greater influence on the gut microbiota than acute dietary strategies. This review presents the current knowledge around the response of the gut microbiota to short-term and long-term dietary interventions and identifies major factors that contribute to microbiota response to diet. Overall, further research on long-term diets that include health and microbiome measures is required before clinical recommendations can be made for dietary modulation of the gut microbiota for health.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Travis T. Sims ◽  
Molly B. El Alam ◽  
Tatiana V. Karpinets ◽  
Stephanie Dorta-Estremera ◽  
Venkatesh L. Hegde ◽  
...  

AbstractDiversity of the gut microbiome is associated with higher response rates for cancer patients receiving immunotherapy but has not been investigated in patients receiving radiation therapy. Additionally, current studies investigating the gut microbiome and outcomes in cancer patients may not have adjusted for established risk factors. Here, we sought to determine if diversity and composition of the gut microbiome was independently associated with survival in cervical cancer patients receiving chemoradiation. Our study demonstrates that the diversity of gut microbiota is associated with a favorable response to chemoradiation. Additionally, compositional variation among patients correlated with short term and long-term survival. Short term survivor fecal samples were significantly enriched in Porphyromonas, Porphyromonadaceae, and Dialister, whereas long term survivor samples were significantly enriched in Escherichia Shigella, Enterobacteriaceae, and Enterobacteriales. Moreover, analysis of immune cells from cervical tumor brush samples by flow cytometry revealed that patients with a high microbiome diversity had increased tumor infiltration of CD4+ lymphocytes as well as activated subsets of CD4 cells expressing ki67+ and CD69+ over the course of radiation therapy. Modulation of the gut microbiota before chemoradiation might provide an alternative way to enhance treatment efficacy and improve treatment outcomes in cervical cancer patients.


2020 ◽  
Vol 3 ◽  
Author(s):  
Antonello Pasini ◽  
Fulvio Mazzocchi

This paper investigates analogies in the dynamics of Covid-19 pandemic and climate change. A comparison of their common features (such as nonlinearity and inertia) and differences helps us to achieve a correct scientific perception of both situations, increasing the chances of actions for their solutions. Besides, applying to both the risk equation provides different angles to analyse them, something that may result useful especially at the policy level. It shows that not only short-term interventions are needed, but also long-term strategies involving some structural changes. More specifically, it also shows that, even if climate change is probably more critical and long-lasting than the Covid-19 crisis, we still have, at least currently, more options for reducing its related risk.


2007 ◽  
Vol 35 (6) ◽  
pp. 1473-1478 ◽  
Author(s):  
M. Fukata ◽  
M.T. Abreu

The colonic epithelium is lined along its apical membrane with ∼1014 bacteria/g of tissue. Commensal bacteria outnumber mammalian cells in the gut severalfold. The reason for this degree of commensalism probably resides in the recent recognition of the microbiome as an important source of metabolic energy in the setting of poorly digestible nutrients. As in many themes in biology, the host may have sacrificed short-term benefit, i.e. nutritional advantages, for long-term consequences, such as chronic inflammation or colon cancer. In the present review, we examine the role of TLR (Toll-like receptor) signalling in the healthy host and the diseased host. We pay particular attention to the role of TLR signalling in idiopathic IBD (inflammatory bowel disease) and colitis-associated carcinogenesis. In general, TLR signalling in health contributes to homoeostatic functions. These include induction of antimicrobial peptides, proliferation and wound healing in the intestine. The pathogenesis of IBD, ulcerative colitis and Crohn's disease may be due to increased TLR or decreased TLR signalling respectively. Finally, we discuss the possible role of TLR signalling in colitis-associated neoplasia.


2012 ◽  
Vol 56 (11) ◽  
pp. 5811-5820 ◽  
Author(s):  
Fiona Fouhy ◽  
Caitriona M. Guinane ◽  
Seamus Hussey ◽  
Rebecca Wall ◽  
C. Anthony Ryan ◽  
...  

ABSTRACTThe infant gut microbiota undergoes dramatic changes during the first 2 years of life. The acquisition and development of this population can be influenced by numerous factors, and antibiotic treatment has been suggested as one of the most significant. Despite this, however, there have been relatively few studies which have investigated the short-term recovery of the infant gut microbiota following antibiotic treatment. The aim of this study was to use high-throughput sequencing (employing both 16S rRNA andrpoB-specific primers) and quantitative PCR to compare the gut microbiota of nine infants who underwent parenteral antibiotic treatment with ampicillin and gentamicin (within 48 h of birth), 4 and 8 weeks after the conclusion of treatment, relative to that of nine matched healthy controls. The investigation revealed that the gut microbiota of the antibiotic-treated infants had significantly higher proportions ofProteobacteria(P= 0.0049) and significantly lower proportions ofActinobacteria(P= 0.00001) (and the associated genusBifidobacterium[P= 0.0132]) as well as the genusLactobacillus(P= 0.0182) than the untreated controls 4 weeks after the cessation of treatment. By week 8, theProteobacterialevels remained significantly higher in the treated infants (P= 0.0049), but theActinobacteria,Bifidobacterium, andLactobacilluslevels had recovered and were similar to those in the control samples. Despite this recovery of totalBifidobacteriumnumbers,rpoB-targeted pyrosequencing revealed that the number of differentBifidobacteriumspecies present in the antibiotic-treated infants was reduced. It is thus apparent that the combined use of ampicillin and gentamicin in early life can have significant effects on the evolution of the infant gut microbiota, the long-term health implications of which remain unknown.


2018 ◽  
Author(s):  
Sean M. Kearney ◽  
Sean M. Gibbons ◽  
SE Erdman ◽  
EJ Alm

ABSTRACTInterest in manipulating the gut microbiota to treat disease has led to a need for understanding how organisms can establish themselves when introduced into a host with an intact microbial community. While probiotic or prebiotic approaches typically lead to a transient pulse in an organism’s abundance, persistent establishment of an introduced species may require alternative strategies. Here, we introduce the concept of orthogonal niche engineering in the gut, where we include a resource typically absent from the diet, seaweed, to establish a customized niche for an introduced organism. We show that in the short term, co-introduction of this resource at 1% in the diet along with an organism with exclusive access to this resource,B. plebeiusDSM 17135, enables it to colonize at a median abundance of 1%, frequently increasing in abundance to 10 or more percent. We construct a mathematical model of the system to infer thatB. plebeiuscompetitively acquires endogenous resources. We provide evidence that it competes with native commensals to achieve its observed abundance. We observe a diet-dependent loss in seaweed responsiveness ofB. plebeiusin the long term and show the potential for IgA-mediated control of putative invaders by the immune system. These results point to the potential for diet-based intervention as a means to introduce target organisms, but also indicate potential modes for failure of this strategy in the long term.


2019 ◽  
Vol 189 (1) ◽  
pp. 1-5 ◽  
Author(s):  
Stephen E Gilman ◽  
Mady Hornig

Abstract The developmental origins of health and disease (DOHaD) model promises a greater understanding of early development but has left unresolved the balance of risks and benefits to offspring of medication use during pregnancy. Masarwa et al. (Am J Epidemiol. 2018;187(8):1817–1827) conducted a meta-analysis of the association between in utero acetaminophen exposure and risks of attention deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). A challenge of meta-analyzing results from observational studies is that summary measures of risk do not correspond to well-defined interventions when the individual studies adjusted for different covariate sets, which was the case here. This challenge limits the usefulness of observational meta-analyses for inferences about etiology and treatment planning. With that limitation understood, Masarwa et al. reported a 20%–30% higher risk of ADHD and ASD following prenatal acetaminophen exposure. Surprisingly, most of the original studies did not report diagnoses of ADHD or ASD. As a result, their summary estimates of risk are not informative about children’s likelihood of ADHD and ASD diagnoses. The long-term promise of DOHaD remains hopeful, but more effort is needed in the short-term to critically evaluate observational studies suggesting risks associated with medications used to treat conditions during pregnancy that might have adverse consequences for a developing fetus.


2019 ◽  
Vol 34 (11) ◽  
pp. 1968-1976 ◽  
Author(s):  
Ping‐I Hsu ◽  
Chao‐Yu Pan ◽  
John Y Kao ◽  
Feng‐Woei Tsay ◽  
Nan‐Jing Peng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document