scholarly journals Epigenetic Regulations of GABAergic Neurotransmission: Relevance for Neurological Disorders and Epigenetic Therapy

2016 ◽  
Vol 4 (1) ◽  
pp. 1-19 ◽  
Author(s):  
Shikshya Shrestha ◽  
Steven M. Offer

The GABAergic neurotransmission is a highly conserved system that has been attributed to various regulatory events. There has been a notable number of studies on the importance of GABAergic neurotransmission, both excitatory and inhibitory, in neurogenesis and central nervous system development including its control of neuronal cell proliferation and migration, synaptogenesis, dendrite formation and branching, and new neuronal cell integration in the adult brain. There has been remarkable progress in understanding the epigenetic regulations of GABAergic genes and their aberrant expressions in various neurological disorders such as autism spectrum disorder, Rett's syndrome, schizophrenia and PWS. The roles of histone modifications, chromatin looping and gene methylation have been implicated in altered regulations of key genes in the GABAergic pathway. Taken together, they affect the functioning of GABAergic neurotransmission and disrupt various events in brain development. Here, we focus on the role of GABAergic neurotransmission in brain development and on how various genetic and epigenetic events regulate the GABAergic genes in pre- and postnatal brain. We also discuss how these regulatory mechanisms contribute to the pathogenesis of neurological disorders and, therefore, can be used in the development of potential epigenetic therapy for these diseases.

Science ◽  
2018 ◽  
Vol 362 (6420) ◽  
pp. eaat8077 ◽  
Author(s):  
Ying Zhu ◽  
André M. M. Sousa ◽  
Tianliuyun Gao ◽  
Mario Skarica ◽  
Mingfeng Li ◽  
...  

Human nervous system development is an intricate and protracted process that requires precise spatiotemporal transcriptional regulation. We generated tissue-level and single-cell transcriptomic data from up to 16 brain regions covering prenatal and postnatal rhesus macaque development. Integrative analysis with complementary human data revealed that global intraspecies (ontogenetic) and interspecies (phylogenetic) regional transcriptomic differences exhibit concerted cup-shaped patterns, with a late fetal-to-infancy (perinatal) convergence. Prenatal neocortical transcriptomic patterns revealed transient topographic gradients, whereas postnatal patterns largely reflected functional hierarchy. Genes exhibiting heterotopic and heterochronic divergence included those transiently enriched in the prenatal prefrontal cortex or linked to autism spectrum disorder and schizophrenia. Our findings shed light on transcriptomic programs underlying the evolution of human brain development and the pathogenesis of neuropsychiatric disorders.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alexis Papariello ◽  
David Taylor ◽  
Ken Soderstrom ◽  
Karen Litwa

AbstractThe endocannabinoid system (ECS) plays a complex role in the development of neural circuitry during fetal brain development. The cannabinoid receptor type 1 (CB1) controls synaptic strength at both excitatory and inhibitory synapses and thus contributes to the balance of excitatory and inhibitory signaling. Imbalances in the ratio of excitatory to inhibitory synapses have been implicated in various neuropsychiatric disorders associated with dysregulated central nervous system development including autism spectrum disorder, epilepsy, and schizophrenia. The role of CB1 in human brain development has been difficult to study but advances in induced pluripotent stem cell technology have allowed us to model the fetal brain environment. Cortical spheroids resemble the cortex of the dorsal telencephalon during mid-fetal gestation and possess functional synapses, spontaneous activity, an astrocyte population, and pseudo-laminar organization. We first characterized the ECS using STORM microscopy and observed synaptic localization of components similar to that which is observed in the fetal brain. Next, using the CB1-selective antagonist SR141716A, we observed an increase in excitatory, and to a lesser extent, inhibitory synaptogenesis as measured by confocal image analysis. Further, CB1 antagonism increased the variability of spontaneous activity within developing neural networks, as measured by microelectrode array. Overall, we have established that cortical spheroids express ECS components and are thus a useful model for exploring endocannabinoid mediation of childhood neuropsychiatric disease.


1989 ◽  
Vol 9 (7) ◽  
pp. 2806-2817 ◽  
Author(s):  
R S Garofalo ◽  
O M Rosen

Insulin and insulinlike growth factor 1 (IGF-1) receptors are present in brain, yet their function remains obscure. Expression of these tyrosine kinase-bearing growth factor receptors during rat brain development was examined by using three antipeptide antibodies directed against epitopes in the beta subunits (AbP2, AbP4, and AbP5). All three antibodies recognized both insulin and IGF-1 receptors. Membranes were prepared from fetal brains (14 to 21 days of gestation), neonatal brain (postnatal day 1), and adult brain. Immunoblot analyses using AbP4 and AbP5 revealed a 92-kilodalton (kDa) protein that corresponded to the beta subunit of the insulin and IGF-1 receptors. Densitometric scanning of immunoblots indicated that receptor proteins were 4- to 10-fold more abundant in fetal brain membranes than in membranes from adult brain. Expression was highest during 16 to 18 days of gestation and declined thereafter to the relatively low level found in adult brain. Immunoblot analyses with AbP2 as well as ligand-activated receptor autophosphorylation revealed an additional protein of 97 kDa. This protein was phosphorylated in response to IGF-1 and was not directly recognized by AbP4 or AbP5. The covalent association of the 97-kDa protein with the 92-kDa beta subunit was indicated by the ability of AbP4 and AbP5 to immunoprecipitate both proteins under nonreducing conditions but only the 92-kDa protein after reduction. In contrast, AbP2 immunoprecipitated both proteins regardless of their association. This immunospecificity remained unchanged after deglycosylation of the isolated proteins. Two-dimensional tryptic phosphopeptide analysis showed that the 92- and 97-kDa subunits of the IGF-1 receptor are related but distinct proteins. Taken together, the data suggest that the 92- and 97-kDa subunits differ in primary amino acid sequence. Thus, two distinct beta subunits may be present in a single IGF-1 receptor in brain. These subunits have in common an epitope recognized by an antibody to the tyrosine kinase domain (AbP2) but differ in regions thought to be important in receptor kinase regulation and signal transduction.


2018 ◽  
Author(s):  
Orkun Akin ◽  
Bryce T. Bajar ◽  
Mehmet F. Keles ◽  
Mark A. Frye ◽  
S. Lawrence Zipursky

SummaryStereotyped synaptic connections define the neural circuits of the brain. In vertebrates, stimulus-independent activity contributes to neural circuit formation. It is unknown whether this type of activity is a general feature of nervous system development. Here, we report patterned, stimulus-independent neural activity in the Drosophila visual system during synaptogenesis. Using in vivo calcium, voltage, and glutamate imaging, we found that all neurons participate in this spontaneous activity, which is characterized by brain-wide periodic active and silent phases. Glia are active in a complementary pattern. Each of the 15 examined of the over 100 specific neuron types in the fly visual system exhibited a unique activity signature. The activity of neurons that are synaptic partners in the adult was highly correlated during development. We propose that this cell type-specific activity coordinates the development of the functional circuitry of the adult brain.


2005 ◽  
Vol 169 (2) ◽  
pp. 341-354 ◽  
Author(s):  
Antonella Santuccione ◽  
Vladimir Sytnyk ◽  
Iryna Leshchyns'ka ◽  
Melitta Schachner

In spite of advances in understanding the role of the cellular prion protein (PrP) in neural cell interactions, the mechanisms of PrP function remain poorly characterized. We show that PrP interacts directly with the neural cell adhesion molecule (NCAM) and associates with NCAM at the neuronal cell surface. Both cis and trans interactions between NCAM at the neuronal surface and PrP promote recruitment of NCAM to lipid rafts and thereby regulate activation of fyn kinase, an enzyme involved in NCAM-mediated signaling. Cis and trans interactions between NCAM and PrP promote neurite outgrowth. When these interactions are disrupted in NCAM-deficient and PrP-deficient neurons or by PrP antibodies, NCAM/PrP-dependent neurite outgrowth is arrested, indicating that PrP is involved in nervous system development cooperating with NCAM as a signaling receptor.


2019 ◽  
Vol 30 (2) ◽  
pp. 640-655 ◽  
Author(s):  
A Vogel Ciernia ◽  
B I Laufer ◽  
H Hwang ◽  
K W Dunaway ◽  
C E Mordaunt ◽  
...  

Abstract Neurodevelopmental disorders (NDDs) affect 7–14% of all children in developed countries and are one of the leading causes of lifelong disability. Epigenetic modifications are poised at the interface between genes and environment and are predicted to reveal insight into NDD etiology. Whole-genome bisulfite sequencing was used to examine DNA cytosine methylation in 49 human cortex samples from 3 different NDDs (autism spectrum disorder, Rett syndrome, and Dup15q syndrome) and matched controls. Integration of methylation changes across NDDs with relevant genomic and genetic datasets revealed differentially methylated regions (DMRs) unique to each type of NDD but with shared regulatory functions in neurons and microglia. NDD DMRs were enriched within promoter regions and for transcription factor binding sites with identified methylation sensitivity. DMRs from all 3 disorders were enriched for ontologies related to nervous system development and genes with disrupted expression in brain from neurodevelopmental or neuropsychiatric disorders. Genes associated with NDD DMRs showed expression patterns indicating an important role for altered microglial function during brain development. These findings demonstrate an NDD epigenomic signature in human cortex that will aid in defining therapeutic targets and early biomarkers at the interface of genetic and environmental NDD risk factors.


2020 ◽  
Vol 8 (3) ◽  
pp. 13
Author(s):  
Lars Lewejohann ◽  
Srinivas R. Pallerla ◽  
Rebecca S. Schreiber ◽  
Joanna Gerula ◽  
Kay Grobe

Disruption of the Heparan sulfate (HS)-biosynthetic gene N-acetylglucosamine N-Deacetylase/N-sulfotransferase 1 (Ndst1) during nervous system development causes malformations that are composites of those caused by mutations of multiple HS binding growth factors and morphogens. However, the role of Ndst function in adult brain physiology is less explored. Therefore, we generated mice bearing a Purkinje-cell-specific deletion in Ndst1 gene function by using Cre/loxP technology under the control of the Purkinje cell protein 2 (Pcp2/L7) promotor, which results in HS undersulfation. We observed that mutant mice did not show overt changes in the density or organization of Purkinje cells in the adult cerebellum, and behavioral tests also demonstrated normal cerebellar function. This suggested that postnatal Purkinje cell development and homeostasis are independent of Ndst1 function, or that impaired HS sulfation upon deletion of Ndst1 function may be compensated for by other Purkinje cell-expressed Ndst isoforms. To test the latter possibility, we additionally deleted the second Purkinje-cell expressed Ndst family member, Ndst2. This selectively abolished reproductive capacity of compound mutant female, but not male, mice, suggesting that ovulation, gestation, or female reproductive behavior specifically depends on Ndst-dependent HS sulfation in cells types that express Cre under Pcp2/L7 promotor control.


2007 ◽  
Vol 232 (9) ◽  
pp. 1195-1203 ◽  
Author(s):  
Kally C. O’Reilly ◽  
Simon Trent ◽  
Sarah J. Bailey ◽  
Michelle A. Lane

In addition to their established role in nervous system development, vitamin A and related retinoids are emerging as regulators of adult brain function. Accutane (13- cis-retinoic acid, isotretinoin) treatment has been reported to increase depression in humans. Recently, we showed that chronic administration of 13- cis-retinoic acid (13- cis-RA) to adolescent male mice increased depression-related behaviors. Here, we have examined whether 13- cis-RA regulates components involved in serotonergic neurotransmission in vitro. We used the RN46A-B14 cell line, derived from rat embryonic raphe nuclei. This cell line synthesizes serotonin (5-hydroxytryptamine, 5-HT) and expresses the 5-HT1A receptor and the serotonin reuptake transporter (SERT). Cells were treated with 0, 2.5, or 10 μ M 13- cis-RA for 48 or 96 hrs, and the levels of 5-HT; its metabolite, 5-hydroxyindoleacetic acid (5HIAA); 5-HT1A receptor; and SERT were determined. Treatment with 13- cis-RA for 96 hrs increased the intracellular levels of 5-HT and tended to increase intra-cellular 5HIAA levels. Furthermore, 48 hrs of treatment with 2.5 and 10 μ M 13- cis-RA significantly increased 5-HT1A protein to 168.5 ± 20.0% and 148.7 ± 2.2% of control respectively. SERT protein levels were significantly increased to 142.5 ± 11.1% and 119.2 ± 3.6% of control by 48 hrs of treatment with 2.5 and 10 μ M of 13- cis-RA respectively. Increases in both 5-HT1A receptor and SERT proteins may lead to decreased serotonin availability at synapses. Such an effect of 13- cis-RA could contribute to the increased depression-related behaviors we have shown in mice.


Author(s):  
Timothy R. Rice

Abstract Children born premature are at risk for neurodevelopmental disorders, including autism and schizophrenia. This piece advances the hypothesis that altered androgen exposure observed in premature infants is an important mediator of the neurodevelopmental risk in males associated with prematurity. Specifically, the alterations of normative physiologic postnatal activations of the hypothalamic-pituitary-gonadal axis that occur in preterm males are hypothesized to contribute to the risk of neuropsychiatric pathology of prematurity through altered androgen-mediated organizational effects on the developing brain. The physiology of testosterone and male central nervous system development in full-term births is reviewed and compared to the developmental processes of prematurity. The effects of the altered testosterone physiology observed within prematurity outside of the central nervous system are reviewed as a segue into a discussion of the effects within the nervous system, with a special focus on autism spectrum disorders and attention deficit hyperactivity disorder. The explanatory power of this model is reviewed as a supplement to the preexisting models of prematurity and neurodevelopmental risk, including infection and other perinatal central nervous system insults. The emphasis is placed on altered androgen exposure as serving as just one among many mediators of neurodevelopmental risk that may be of interest for further research and evidence-based investigation. Implications for diagnosis, management and preventative treatments conclude the piece.


Sign in / Sign up

Export Citation Format

Share Document