scholarly journals ERAP1 and PDE8A Are Downregulated in Cattle Protected against Bovine Tuberculosis

2017 ◽  
Vol 27 (4) ◽  
pp. 237-245 ◽  
Author(s):  
Federico Carlos Blanco ◽  
Marcelo Abel Soria ◽  
Laura Inés Klepp ◽  
Fabiana Bigi

Bovine tuberculosis (bTB) is a zoonotic disease caused by <i>Mycobacterium bovis</i> that is responsible for significant economic losses worldwide. In spite of its relevance, the limited knowledge about the host immune responses that provide effective protection against the disease has long hampered the development of an effective vaccine. The identification of host proteins with an expression that correlates with protection against bTB would contribute to the understanding of the cattle defence mechanisms against <i>M. bovis</i> infection. In this study, we found that <i>ERAP1</i> and <i>PDE8A</i> were downregulated in vaccinated cattle that were protected from experimental <i>M. bovis</i> challenge. Remarkably, both genes encode proteins that have been negatively associated with immune protection against bTB.

Vaccines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 480
Author(s):  
Honglei Wang ◽  
Yangyang Xu ◽  
Wenhai Feng

Porcine reproductive and respiratory syndrome virus (PRRSV), an RNA virus widely prevalent in pigs, results in significant economic losses worldwide. PRRSV can escape from the host immune response in several processes. Vaccines, including modified live vaccines and inactivated vaccines, are the best available countermeasures against PRRSV infection. However, challenges still exist as the vaccines are not able to induce broad protection. The reason lies in several facts, mainly the variability of PRRSV and the complexity of the interaction between PRRSV and host immune responses, and overcoming these obstacles will require more exploration. Many novel strategies have been proposed to construct more effective vaccines against this evolving and smart virus. In this review, we will describe the mechanisms of how PRRSV induces weak and delayed immune responses, the current vaccines of PRRSV, and the strategies to develop modified live vaccines using reverse genetics systems.


Author(s):  
Vanessa O. Ezenwa ◽  
Sarah A. Budischak ◽  
Peter Buss ◽  
Mauricio Seguel ◽  
Gordon Luikart ◽  
...  

AbstractPathogen interactions arising during coinfection can exacerbate disease severity, for example, when the immune response mounted against one pathogen negatively affects defense of another. It is also possible that host immune responses to a pathogen shaped by historical evolutionary interactions between host and pathogen, may modify host immune defenses in ways that have repercussions for other pathogens. In this case, negative interactions between two pathogens could emerge even in the absence of concurrent infection. Parasitic worms and tuberculosis (TB) are involved in one of the most geographically extensive of pathogen interactions, and during coinfection, worms can exacerbate TB disease outcomes. Here, we show that in a wild mammal, natural resistance to worms affects bovine tuberculosis (BTB) severity independently of active worm infection. We found that worm-resistant individuals were more likely to die of BTB than were non-resistant individuals, and their disease progressed more quickly. Anthelmintic treatment moderated, but did not eliminate, the resistance effect, and the effects of resistance and treatment were additive with untreated, resistant individuals experiencing the highest mortality. Interestingly, resistance and anthelmintic treatment had non-overlapping effects on BTB pathology. The effects of resistance manifested in the lungs (the primary site of BTB infection), while the effects of treatment manifested almost entirely in the lymph nodes (the site of disseminated disease), suggesting that resistance and active worm infection affect BTB progression via distinct mechanisms. Our findings reveal that interactions between pathogens can occur as a consequence of processes arising on very different timescales.


2003 ◽  
Vol 130 (3) ◽  
pp. 485-490 ◽  
Author(s):  
L. COBOS-MARÍN ◽  
J. MONTES-VARGAS ◽  
S. RIVERA-GUTIERREZ ◽  
A. LICEA-NAVARRO ◽  
J. A. GONZÁLEZ-Y-MERCHAND ◽  
...  

Bovine tuberculosis is a zoonotic disease that not only causes huge economic losses but also poses an important risk for human infection. The definitive identification of a clinical isolate relies on time-consuming, highly specialized and laborious biochemical tests. We have developed a method for the rapid and reliable identification of Mycobacterium bovis and for its simultaneous differentiation from other members of the M. tuberculosis complex. Furthermore, the technique also allowed us to distinguish M. tuberculosis complex members from other Mycobacterial species. The method comprises both a single PCR and a multiplex-PCR and can be confidently applied to samples of both veterinary and human origin.


2015 ◽  
Vol 53 (7) ◽  
pp. 2316-2323 ◽  
Author(s):  
Hayley C. King ◽  
Andrew Murphy ◽  
Phillip James ◽  
Emma Travis ◽  
David Porter ◽  
...  

The incidence ofMycobacterium bovis, the causative agent of bovine tuberculosis, in cattle herds in the United Kingdom is increasing, resulting in substantial economic losses. The European badger (Meles meles) is implicated as a wildlife reservoir and is the subject of control measures aimed at reducing the incidence of infection in cattle populations. Understanding the epidemiology ofM. bovisin badger populations is essential for directing control interventions and understanding disease spread; however, accurate diagnosis in live animals is challenging and currently uses invasive methods. Here we present a noninvasive diagnostic procedure and sampling regimen using field sampling of latrines and detection ofM. boviswith quantitative PCR tests, the results of which strongly correlate with the results of immunoassays in the field at the social group level. This method allowsM. bovisinfections in badger populations to be monitored without trapping and provides additional information on the quantities of bacterial DNA shed. Therefore, our approach may provide valuable insights into the epidemiology of bovine tuberculosis in badger populations and inform disease control interventions.


2014 ◽  
Vol 21 (10) ◽  
pp. 1385-1395 ◽  
Author(s):  
Jaimie D. Sixsmith ◽  
Michael W. Panas ◽  
Sunhee Lee ◽  
Geoffrey O. Gillard ◽  
KeriAnn White ◽  
...  

ABSTRACTLive attenuated nonpathogenicMycobacterium bovisbacillus Calmette-Guérin (BCG) mediates long-lasting immune responses, has been safely administered as a tuberculosis vaccine to billions of humans, and is affordable to produce as a vaccine vector. These characteristics make it very attractive as a human immunodeficiency virus (HIV) vaccine vector candidate. Here, we assessed the immunogenicity of recombinant BCG (rBCG) constructs with different simian immunodeficiency virus (SIV)gagexpression cassettes as priming agents followed by a recombinant replication-incompetent New York vaccinia virus (NYVAC) boost in rhesus macaques. Unmutated rBCG constructs were used in comparison to mutants with gene deletions identified in anin vitroscreen for augmented immunogenicity. We demonstrated that BCG-SIVgagis able to elicit robust transgene-specific priming responses, resulting in strong SIV epitope-specific cellular immune responses. While enhanced immunogenicity was sustained at moderate levels for >1 year following the heterologous boost vaccination, we were unable to demonstrate a protective effect after repeated rectal mucosal challenges with pathogenic SIVmac251. Our findings highlight the potential for rBCG vaccines to stimulate effective cross-priming and enhanced major histocompatibility complex class I presentation, suggesting that combining this approach with other immunogens may contribute to the development of effective vaccine regimens against HIV.


2020 ◽  
Author(s):  
Petronillah Rudo Sichewo ◽  
Tiny M. Hlokwe ◽  
Eric M.C. Etter ◽  
Anita L. Michel

Abstract Background: Bovine tuberculosis (bTB) affects cattle and wildlife in South Africa with the African buffalo (Syncerus caffer) as the principal maintenance host. The presence of a wildlife maintenance host at the wildlife/livestock interface acting as spill-over host makes it much more challenging to control and eradicate bTB in cattle. Spoligotyping and mycobacterial interspersed repetitive unit-variable number of tandem repeat (MIRU-VNTR) genotyping methods were performed to investigate the genetic diversity of Mycobacterium bovis (M. bovis) isolates from cattle and wildlife, their distribution and transmission at the wildlife/livestock interface in northern Kwa-Zulu Natal (KZN), South Africa. Results: SB0130 was identified as the dominant spoligotype pattern at this wildlife/livestock interface, while VNTR typing revealed a total of 29 VNTR profiles (strains) in the KZN province signifying high genetic variability. The detection of 5 VNTR profiles shared between cattle and buffalo suggests M. bovis transmission between species. MIRU-VNTR confirmed co-infection in one cow with three strains of M. bovis that differed at a single locus, with 2 being shared with buffalo, implying pathogen introduction from most probably unrelated wildlife sources. Conclusion: Our findings highlight inter and intra species transmission of bTB at the wildlife/livestock interface and the need for the implementation of adequate bTB control measures to mitigate the spread of the pathogen responsible for economic losses and a public health threat.


2021 ◽  
Vol 12 ◽  
Author(s):  
Katrin Smith ◽  
Léanie Kleynhans ◽  
Robin M. Warren ◽  
Wynand J. Goosen ◽  
Michele A. Miller

Mycobacterium bovis has the largest host range of the Mycobacterium tuberculosis complex and infects domestic animal species, wildlife, and humans. The presence of global wildlife maintenance hosts complicates bovine tuberculosis (bTB) control efforts and further threatens livestock and wildlife-related industries. Thus, it is imperative that early and accurate detection of M. bovis in all affected animal species is achieved. Further, an improved understanding of the complex species-specific host immune responses to M. bovis could enable the development of diagnostic tests that not only identify infected animals but distinguish between infection and active disease. The primary bTB screening standard worldwide remains the tuberculin skin test (TST) that presents several test performance and logistical limitations. Hence additional tests are used, most commonly an interferon-gamma (IFN-γ) release assay (IGRA) that, similar to the TST, measures a cell-mediated immune (CMI) response to M. bovis. There are various cytokines and chemokines, in addition to IFN-γ, involved in the CMI component of host adaptive immunity. Due to the dominance of CMI-based responses to mycobacterial infection, cytokine and chemokine biomarkers have become a focus for diagnostic tests in livestock and wildlife. Therefore, this review describes the current understanding of host immune responses to M. bovis as it pertains to the development of diagnostic tools using CMI-based biomarkers in both gene expression and protein release assays, and their limitations. Although the study of CMI biomarkers has advanced fundamental understanding of the complex host-M. bovis interplay and bTB progression, resulting in development of several promising diagnostic assays, most of this research remains limited to cattle. Considering differences in host susceptibility, transmission and immune responses, and the wide variety of M. bovis-affected animal species, knowledge gaps continue to pose some of the biggest challenges to the improvement of M. bovis and bTB diagnosis.


2002 ◽  
Vol 70 (3) ◽  
pp. 1488-1500 ◽  
Author(s):  
Hilary E. Kennedy ◽  
Michael D. Welsh ◽  
David G. Bryson ◽  
Joseph P. Cassidy ◽  
Fiona I. Forster ◽  
...  

ABSTRACT It is accepted that cell-mediated immune responses predominate in mycobacterial infections. Many studies have shown that CD4+ T cells produce Th1 cytokines, such as gamma interferon (IFN-γ), in response to mycobacterial antigens and that the cytolytic activity of CD8+ cells toward infected macrophages is important. However, the extent and manner in which γδ T cells participate in this response remain unclear. In ruminants, γδ T cells comprise a major proportion of the peripheral blood mononuclear cell population. We have previously shown that WC1+ γδ T cells are involved early in Mycobacterium bovis infection of cattle, but their specific functions are not well understood. Here we describe an in vivo model of bovine tuberculosis in which the WC1+ γδ T cells were depleted from the peripheral circulation and respiratory tract, by infusion of WC1+-specific monoclonal antibody, prior to infection. While no effects on disease pathology were observed in this experiment, results indicate that WC1+ γδ T cells, which become significantly activated (CD25+) in the circulation of control calves from 21 days postinfection, may play a role in modulating the developing immune response to M. bovis. WC1+-depleted animals exhibited decreased antigen-specific lymphocyte proliferative response, an increased antigen-specific production of interleukin-4, and a lack of specific immunoglobulin G2 antibody. This suggests that WC1+ γδ TCR+ cells contribute, either directly or indirectly, toward the Th1 bias of the immune response in bovine tuberculosis—a hypothesis supported by the decreased innate production of IFN-γ, which was observed in WC1+-depleted calves.


Vaccine ◽  
1999 ◽  
Vol 17 (3) ◽  
pp. 245-251 ◽  
Author(s):  
Chikara Miyazaki ◽  
Naoya Ohara ◽  
Hideharu Yukitake ◽  
Masamichi Kinomoto ◽  
Kenji Matsushita ◽  
...  

2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Nidhi Yadav ◽  
Ravi Kant Upadhyay

Present review article explains tick-borne diseases, transmission, host immune responses, diagnosis and control in relation to climatic variations. Ticks are hematophagous ectoparasites which suck large volumes of blood from livestock and humans. They release large numbers of protozoans, bacteria, rickettsia and viral pathogens during blood feeding and transmit disease pathogens through saliva. Due to heavy blood sucking by ticks animals face significant blood and weight loss that affect their overall health. Due to more severe illness, high economic losses were noted in livestock. This article highlights medically important tick borne diseases in man and livestock, its pathogenesis, diagnosis and treatment methods. The present article emphasizes invasion of hosts, host-pathogen interactions, tick saliva toxin induced host immune responses and biological effects. This article highlighted various tick control methods i.e. physical killing, acaricidal, biological, hormonal, genetic and immunological methods such as administration of protective antibody and vaccines for disease control in human being and his livestock. The authors suggest non-chemical environmentally safe methods for successful control of tick borne diseases to kill cattle, bird and canine invading ticks.


Sign in / Sign up

Export Citation Format

Share Document