scholarly journals IL-33 Attenuates Sepsis by Inhibiting IL-17 Receptor Signaling through Upregulation of SOCS3

2017 ◽  
Vol 42 (5) ◽  
pp. 1961-1972 ◽  
Author(s):  
Ran Lv ◽  
Jinning Zhao ◽  
Min Lei ◽  
Dongju Xiao ◽  
Yijin Yu ◽  
...  

Background/Aims: Sepsis is a systemic inflammatory response during infection. There are limited therapeutic options for sepsis patients. Interleukin (IL)-33 has been reported recently with a beneficial effect in mouse sepsis. Methods: In this study, we initiated a clinical study to measure serum levels of pro-inflammatory cytokines including IL-33 in sepsis patients. Next, we employed cecal ligation and puncture (CLP) to study the role of IL-33 during sepsis. To further dissect the molecular mechanism, we used in vivo knockout models and in vitro knockdown murine embryonic fibroblasts (MEFs) to investigate the cross-talk between IL-33 and IL-17 signaling, and to identify the potential downstream mediators. Results: IL-33 and IL-17 were upregulated in both clinical and experimental sepsis. In CLP, IL-33 (-/-) mice showed higher mortality rate, and IL-33 treatment improved the survival rate. Elevated proinflammatory cytokines in sepsis were related to IL-17 from γδT cells. IL-33 treatment suppressed production of these cytokines by targeting IL-17 signaling both in vivo and in vitro. Finally, IL-33 was shown to inhibit the IL-17 pathway via activating suppressor of cytokine signaling (SOCS)-3. Conclusion: Collectively, the results suggest that IL-33 plays a negative regulatory role in sepsis progression by inhibiting IL-17 pathway through activating SOCS3. This finding would inspire a new therapeutic strategy for treating sepsis.

Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Christina Grothusen ◽  
Harald Schuett ◽  
Stefan Lumpe ◽  
Andre Bleich ◽  
Silke Glage ◽  
...  

Introduction: Atherosclerosis is a chronic inflammatory disease of the cardiovascular system which may result in myocardial infarction and sudden cardiac death. While the role of pro-inflammatory signaling pathways in atherogenesis has been well characterized, the impact of their negative regulators, e.g. suppressor of cytokine signaling (SOCS)-1 remains to be elucidated. Deficiency of SOCS-1 leads to death 3 weeks post-partum due to an overwhelming inflammation caused by an uncontrolled signalling of interferon-gamma (IFNγ). This phenotype can be rescued by generating recombination activating gene (rag)-2, SOCS-1 double knock out (KO) mice lacking mature lymphocytes, the major source of IFNγ. Since the role of SOCS-1 during atherogenesis is unknown, we investigated the impact of a systemic SOCS-1 deficiency in the low-density lipoprotein receptor (ldlr) KO model of atherosclerosis. Material and Methods: socs-1 −/− /rag-2 −/− deficient mice were crossed with ldlr-KO animals. Mice were kept under sterile conditions on a normal chow diet. For in-vitro analyses, murine socs-1 −/− macrophages were stimulated with native low density lipoprotein (nLDL) or oxidized (ox)LDL. SOCS-1 expression was determined by quantitative PCR and western blot. Foam cell formation was determined by Oil red O staining. Results: socs-1 −/− /rag-2 −/− /ldlr −/− mice were born according to mendelian law. Tripel-KO mice showed a reduced weight and size, were more sensitive to bacterial infections and died within 120 days (N=17). Histological analyses revealed a systemic, necrotic, inflammation in Tripel-KO mice. All other genotypes developed no phenotype. In-vitro observations revealed that SOCS-1 mRNA and protein is upregulated in response to stimulation with oxLDL but not with nLDL. Foam cell formation of socs-1 −/− macrophages was increased compared to controls. Conclusion: SOCS-1 seemingly controls critical steps of atherogenesis by modulating foam cell formation in response to stimulation with oxLDL. SOCS-1 deficiency in the ldlr-KO mouse leads to a lethal inflammation. These observations suggest a critical role for SOCS-1 in the regulation of early inflammatory responses in atherogenesis.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Junfeng Ye ◽  
Yuanqiang Lin ◽  
Ying Yu ◽  
Di Sun

Abstract Background Long non-coding RNA nuclear paraspeckle assembly transcript 1 (NEAT1) has been reported to play an essential role in non-alcoholic fatty liver disease. However, the role of NEAT1 in regulation of alcoholic steatohepatitis (ASH) remains largely unknown. This study aims to explore the role of NEAT1 in ASH by mediating microRNA-129-5p (miR-129-5p) targeting suppressor of cytokine signaling 2 (SOCS2). Methods NEAT1, miR-129-5p and SOCS2 expression in serum of ASH patients were assessed. In the in vitro cellular experiment, we transfected siRNAs, oligonucleotides or plasmids into ethanol-induced AML-12 mouse hepatocytes to alter NEAT1 and miR-129-5p expression, and inflammatory factors and lipid content were determined. In the in vivo animal experiment, we injected lentiviruses carrying siRNAs, oligonucleotides or plasmids onto ASH mice (ASH induced by feeding mice a Lieber-DeCarli ethanol diet) to alter NEAT1 and miR-129-5p expression through the tail vein. Serum liver function, blood lipids and inflammatory factors were detected; liver histopathology, liver cell apoptosis, and fibrosis were observed. The relationship between NEAT1 and miR-129-5p, or between miR-129-5p and SOCS2 was verified. Results MiR-129-5p was reduced while NEAT1 and SOCS2 were elevated in ASH. Inhibited NEAT1 or elevated miR-129-5p suppressed the elevated lipid metabolism and restrained inflammation reaction in ethanol-stimulated AML-12 cells. The promoted miR-129-5p and inhibited NEAT1 could improve the liver function and repress blood lipid, inflammation reaction, hepatocyte apoptosis and liver fibrosis in ethanol-induced ASH mice. Furthermore, NEAT1 could negatively regulate miR-129-5p to target SOCS2. Conclusion We have found that the inhibited NEAT1 could suppress liver fibrosis in ASH mice by promoting miR-129-5p and restraining SOCS2, thereby decelerating the development of ASH.


Blood ◽  
1992 ◽  
Vol 80 (1) ◽  
pp. 194-202 ◽  
Author(s):  
E Shacter ◽  
GK Arzadon ◽  
J Williams

Abstract Intraperitoneal (i.p.) injection of a mineral oil such as pristane induces a chronic inflammatory response in mice. This is characterized by a large influx of macrophages and other inflammatory cells into the peritoneal cavity for months after injection of the oil. By using the B9 cell bioassay, it was found that injection of pristane caused a marked and prolonged elevation of interleukin-6 (IL-6) levels in the peritoneal cavities of the mice. IL-6 was undetectable (less than 15 U/mL) in the peritoneal fluids of unprimed mice and during the first week after injecting pristane. From 4 to 20 weeks, the concentration of IL-6 increased to an apparent plateau with concentrations ranging from 200 to 2,000 U/mL. Increasing the dose of pristane did not substantially increase the peritoneal levels of IL-6 established at 20 weeks after pristane treatment. At later times (by day 250), the level decreased to 263 +/- 217 U/mL. However, mice that developed plasma cell tumors around day 300 showed high levels of IL-6 in the ascites fluid (650 to 2,400 U/mL). Serum levels of IL-6 were also elevated in pristane-primed mice but were substantially lower than those found in the peritoneal cavity. Chronic administration of the nonsteroidal anti- inflammatory drug indomethacin decreased the levels of IL-6 by 75% to 80%. Experiments performed in vitro showed that pristane-elicited macrophages secreted low levels of IL-6 constitutively and high levels of IL-6 in the presence of lipopolysaccharide. Both IL-6 and prostaglandin E2 production were inhibited by addition of indomethacin to macrophage cultures in vitro. Treatment of mice with pristane may provide a model system for studying the inflammatory pathways that control IL-6 levels in vivo. The relevance of these results to elucidation of the role of IL-6 in plasma cell tumorigenesis is discussed.


2006 ◽  
Vol 291 (5) ◽  
pp. R1399-R1405 ◽  
Author(s):  
S. Gentili ◽  
J. S. Schwartz ◽  
M. J. Waters ◽  
I. C. McMillen

The fetal pituitary-adrenal axis plays a key role in the fetal response to intrauterine stress and in the timing of parturition. The fetal sheep adrenal gland is relatively refractory to stimulation in midgestation (90–120 days) before the prepartum activation, which occurs around 135 days gestation (term = 147 ± 3 days). The mechanisms underlying the switch from adrenal quiescence to activation are unclear. Therefore, we have investigated the expression of suppressor of cytokine signaling-3 (SOCS-3), a putative inhibitor of tissue growth in the fetal sheep adrenal between 50 and 145 days gestation and in the adrenal of the growth-restricted fetal sheep in late gestation. SOCS-3 is activated by a range of cytokines, including prolactin (PRL), and we have, therefore, determined whether PRL administered in vivo or in vitro stimulates SOCS-3 mRNA expression in the fetal adrenal in late gestation. There was a decrease ( P < 0.005) in SOCS-3 expression in the fetal adrenal between 54 and 133 days and between 141 and 144 days gestation. Infusion of the dopaminergic agonist, bromocriptine, which suppressed fetal PRL concentrations but did not decrease adrenal SOCS-3 mRNA expression. PRL administration, however, significantly increased adrenal SOCS-3 mRNA expression ( P < 0.05). Similarly, there was an increase ( P < 0.05) in SOCS-3 mRNA expression in adrenocortical cells in vitro after exposure to PRL (50 ng/ml). Placental and fetal growth restriction had no effect on SOCS-3 expression in the adrenal during late gestation. In summary, the decrease in the expression of the inhibitor SOCS-3 after 133 days gestation may be permissive for a subsequent increase in fetal adrenal growth before birth. We conclude that factors other than PRL act to maintain adrenal SOCS-3 mRNA expression before 133 days gestation but that acute elevations of PRL can act to upregulate adrenal SOCS-3 expression in the sheep fetus during late gestation.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Paola Di Benedetto ◽  
Piero Ruscitti ◽  
Onorina Berardicurti ◽  
Noemi Panzera ◽  
Nicolò Grazia ◽  
...  

Abstract Objective During rheumatoid arthritis (RA), the angiogenic processes, occurring with pannus-formation, may be a therapeutic target. JAK/STAT-pathway may play a role and the aim of this work was to investigate the inhibiting role of a JAK-inhibitor, tofacitinib, on the angiogenic mechanisms occurring during RA. Methods After ethical approval, JAK-1, JAK-3, STAT-1, STAT-3 and VEGF expression was evaluated on RA-synovial-tissues. In vitro, endothelial cells (ECs), stimulated with 20 ng/ml of VEGF and/or 1 μM of tofacitinib, were assessed for tube formation, migration and proliferation, by Matrigel, Boyden chamber assay and ki67 gene-expression. In vivo, 32 mice received collagen (collagen-induced arthritis (CIA)) and 32 mice PBS (control). At day 19, CIA and controls mice were divided: 16 mice receiving vehicle and 16 mice receiving tofacitinib. At day 35, the arthritis score, the thickness of paw joints and the serum levels of VEGF and Ang-2 were evaluated. Results The expression of JAK-1, JAK-3, STAT-1, STAT-3 and VEGF in synovial tissue of RA-patients were significantly higher than healthy controls. In vitro, tofacitinib inhibited the ECs ability to form vessels, to proliferate and to migrate. In vivo, administration of tofacitinib prevented the increase of the arthritis score, the paw thickness, the synovial vessels and VEGF and Ang-2 serum-accumulation, when compared to CIA without tofacitinib. Conclusions We explored the anti-angiogenic role of tofacitinib, reporting its ability to inhibit in vitro the angiogenic mechanisms of ECs and in vivo the formation of new synovial vessels, occurring in CIA model. These findings suggest that the therapeutic effect of tofacitinib during RA may be also related to its anti-angiogenic activity.


2018 ◽  
Vol 315 (4) ◽  
pp. G443-G453 ◽  
Author(s):  
Xia Lin ◽  
Li Chen ◽  
Haiyan Li ◽  
Yu Liu ◽  
Yanhong Guan ◽  
...  

Liver regeneration after two-thirds partial hepatectomy (PH) is a clinically significant repair process for restoring proper liver architecture. Although microRNA-155 (miR-155) has been found to serve as a crucial microRNA regulator that controls liver cell function and proliferation, little is known about its specific role in the regenerating liver. Using a mouse model with miR-155 overexpression or miR-155 knockout, we investigated the molecular mechanisms of miR-155 in liver regeneration. We found a marked induction of miR-155 in C57BL/6 mice after PH. Furthermore, RL-m155 mice showed enhanced liver regeneration as a result of accelerated progression of hepatocytes into the cell cycle, mainly through an increase in cyclin levels. However, proliferation of hepatocytes was delayed in miR-155-deficient livers. Expression of suppressor of cytokine signaling 1 (SOCS1) was dramatically downregulated in the process of liver regeneration, and enhancement of SOCS1 contributed to impaired proliferation of hepatocytes. Additionally, in vitro and in vivo experiments showed that adenovirus- or adeno-associated virus-mediated overexpression of SOCS1 attenuated improved liver regeneration induced by miR-155 overexpression. Our study shows that miR-155 is a pro-proliferative regulator in liver regeneration by facilitating the cell cycle and directly targeting SOCS1. NEW & NOTEWORTHY Our findings suggest a microRNA-155 (miR-155)-mediated positive regulation pattern in liver regeneration. A series of in vivo and in vitro studies showed that miR-155 upregulation enhanced partial hepatectomy-induced proliferation of hepatocytes by promoting the cell cycle without inducing DNA damage or apoptosis. Suppressor of cytokine signaling 1, a target gene of miR-155, antagonized the proliferation-promoting effect of miR-155. Therefore, pharmacological intervention targeting miR-155 may be therapeutically beneficial in various liver diseases.


2008 ◽  
Vol 180 (9) ◽  
pp. 6270-6278 ◽  
Author(s):  
Yu Liu ◽  
Keith N. Stewart ◽  
Eileen Bishop ◽  
Carylyn J. Marek ◽  
David C. Kluth ◽  
...  

Endocrinology ◽  
2007 ◽  
Vol 148 (4) ◽  
pp. 1707-1716 ◽  
Author(s):  
Cheng Wang ◽  
Shyamal K. Roy

The role of E2 on primordial follicle formation was examined by treating neonatal hamsters with 1 or 2 μg estradiol cypionate (ECP) at age postnatal d 1 (P1) and P4 or by in vitro culture of embryonic d 15 (E15) ovaries with 1, 5, or 10 ng/ml estradiol-17β (E2). The specificity of E2 action was examined by ICI 182,780. One microgram of ECP maintained serum levels of E2 within the physiological range, significantly reduced apoptosis, and stimulated the formation and development of primordial follicles. In contrast, 2 μg ECP increased serum E2 levels to 400 pg/ml and had significantly less influence on primordial follicle formation. In vivo, ICI 182,780 significantly increased apoptosis and caused a modest reduction in primordial follicle formation. The formation and development of primordial follicles in vitro increased markedly with 1 ng/ml E2, and the effect was blocked by ICI 182,780. Higher doses of E2 had no effect on primordial follicle formation but significantly up-regulated apoptosis, which was blocked by ICI 182,780. CYP19A1 mRNA expression occurred by E13 and increased with the formation of primordial follicles. P4 ovaries synthesized E2 from testosterone, which increased further by FSH. Both testosterone and FSH maintained ovarian CYP19A1 mRNA, but FSH up-regulated the expression. These results suggest that neonatal hamster ovaries produce E2 under FSH control and that E2 action is essential for the survival and differentiation of somatic cells and the oocytes leading to the formation and development of primordial follicles. This supportive action of E2 is lost when hormone levels increase above a threshold.


2015 ◽  
Vol 36 (5) ◽  
pp. 1743-1752 ◽  
Author(s):  
Xiaoming Qi ◽  
Jianqiang Li ◽  
Changbo Zhou ◽  
Chunlei Lv ◽  
Min Tian

Background/Aims: An increasing number of studies show that microRNAs (miRNAs) play crucial roles in nasopharyngeal carcinoma (NPC) tumorigenesis. The aim of our study was to investigate the biological roles and mechanisms of miR-142-3p in NPC. Methods: miR-142-3p expression was examined in NPC specimens and nasopharyngitis biopsy samples by quantitative real-time PCR. The biological functions of miR-142-3p were studied using a series of in vitro and in vivo approaches. Results: miR-142-3p is over-expressed in NPC tissues and cell lines. Knockdown of miR-142-3p significantly inhibited cell proliferation and cell cycle progression in vitro, and suppressed tumor growth in a mouse model. Suppressor of cytokine signaling 6 (SOCS6) was identified as a direct target of miR-142-3p, and miR-142-3p down-regulated the expression of SOCS6 by directly binding to its 3′untranslated region (UTR). Knockdown of SOCS6 abrogated the effects of miR-142-3p down-regulation. Conclusion: These findings indicate that miR-142-3p regulates NPC development by down-regulating SOCS6 expression and suggest that modulation of miR-142-3p expression could be a therapeutic strategy for NPC.


Sign in / Sign up

Export Citation Format

Share Document