scholarly journals Kaempferol Alleviates Angiotensin II-Induced Cardiac Dysfunction and Interstitial Fibrosis in Mice

2017 ◽  
Vol 43 (6) ◽  
pp. 2253-2263 ◽  
Author(s):  
Yuan Liu ◽  
Lu Gao ◽  
Sen Guo ◽  
Yuzhou Liu ◽  
Xiaoyan Zhao ◽  
...  

Background/Aims: Endothelial-to-mesenchymal transition (EndMT) is a mechanism that promotes cardiac fibrosis induced by Angiotensin II (AngII). Kaempferol (KAE) is a monomer component mainly derived from the rhizome of Kaempferia galanga L. It shows anti-inflammatory, anti-oxidative, anti-microbial and anti-cancer properties, which can be used in the treatment of cancer, cardiovascular diseases, infection, etc. But, its effects on the development of cardiac remodelling remain completely unknown. The aim of the present study was to determine whether KAE attenuates cardiac hypertrophy induced by angiotensin II (Ang II) in cultured neonatal rat cardiac myocytes in vitro and cardiac hypertrophy induced by AngII infusion in mice in vivo. Methods: Male wild-type mice aged 8-10 weeks with or without KAE were subjected to AngII or saline, to induce fibrosis or as a control, respectively. Morphological changes, echocardiographic parameters, histological analyses, and hypertrophic markers were also used to evaluate hypertrophy. Results: KAE prevented and reversed cardiac remodelling induced by AngII. The KAE in this model exerted no basal effects but attenuated cardiac fibrosis, hypertrophy and dysfunction induced by AngII. Both in vivo and in vitro experiments demonstrated that Ang II infusion or TGF-β induced EndMT can be reduced by KAE and the proliferation and activation of cardiac fibroblasts (CFs) can be inhibited by KAE. Conclusions: The results suggest that KAE prevents and reverses ventricular fibrosis and cardiac dysfunction, providing an experimental basis for clinical treatment on ventricular fibrosis.

2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Sandra B Haudek ◽  
Jeff Crawford ◽  
Erin Reineke ◽  
Alberto A Allegre ◽  
George E Taffet ◽  
...  

Angiotensin-II (Ang-II) plays a key role in the development of cardiomyopathies, as it is associated with many conditions involving heart failure and pathologic hypertrophy. Using a murine model of Ang-II infusion, we found that Ang-II induced the synthesis of monocyte chemoattractant protein 1 (MCP-1) that mediated the uptake of CD34 + /CD45 + monocytic cells into the heart. These precursor cells differentiated into collagen-producing fibroblasts and were responsible for the Ang-II-induced development of reactive fibrosis. Preliminary in vitro data using our monocyte-to-fibroblast differentiation model, suggested that Ang-II required the presence of TNF to induce fibroblast maturation from monocytes. In vivo, they indicated that in mice deficient of both TNF receptors (TNFR1 and TNFR2), Ang-II-induced fibrosis was absent. We now assessed the hypothesis that specific TNFR1 signaling is necessary for Ang-II-mediated cardiac fibrosis. Mice deficient in either TNFR1 (TNFR1-KO) or TNFR2 (TNFR2-KO) were subjected to continuous infusion of Ang-II for 1 to 6 weeks (n=6-8/group). Compared to wild-type, we found that in TNFR1-KO, but not in TNFR2-KO mouse hearts, collagen deposition was attenuated, as was cardiac α-smooth muscle actin protein (a marker for activated fibroblasts). When we isolated viable cardiac fibroblasts and characterized them by flow cytometry, we found that Ang-II infusion in TNFR1-KO, but not in TNFR2-KO, resulted in a marked decrease of CD34 + /CD45 + cells. Quantitative RT-PCR demonstrated a striking reduction of type 1 and 3 collagen, as well of MCP-1 mRNA expression in TNFR1-KO mouse hearts. Further measurements of cardiovascular parameters indicated that TNFR1-KO animals developed lesser Ang-II-mediated LV remodeling, smaller changes in E-linear deceleration times/rates over time, and displayed a lower Tei index (a heart rate independent marker of cardiac function), indicating less stiffness in TNFR1-KO hearts compared to wild-type and TNFR2-KO hearts. The data suggest that Ang-II-dependent cardiac fibrosis requires TNF and its signaling through TNFR1 which enhances the induction of MCP-1 and uptake of monocytic fibroblast precursors that are associated with reactive fibrosis and cardiac remodeling and function.


2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Daniel N Meijles ◽  
Michelle A Hardyman ◽  
Stephen J Fuller ◽  
Kerry A Rostron ◽  
Sam J Leonard ◽  
...  

Introduction: ERK1/2 promote hypertrophy and are protective in the heart, but cause cancer in dividing cells. Raf kinases lie upstream of ERK1/2 and Raf inhibitors (e.g. SB590885 (SB), dabrafenib (Dab)) are in development/use for cancer. Paradoxically, in cancer cells, low concentrations of SB/Dab stimulate (rather than inhibit) ERK1/2. Hypothesis: Our hypothesis is that the heart is primed for Raf paradox signaling. Raf inhibitors have potential to activate ERK1/2 in cardiomyocytes and promote cardiac hypertrophy. Methods: Neonatal rat ventricular cardiomyocytes (NRVMs) were exposed to inhibitors. Dab or SB (3 or 0.5 mg/kg/d) were studied in 12 wk male C57Bl6 mice in vivo in the presence of angiotensin II (AngII, 0.8 mg/kg/d) (n=6-11) using osmotic minipumps. Effects were compared with vehicle controls. Echocardiography was performed (Vevo2100). M-mode images (short axis view) were analyzed; data for each mouse were normalized to the mean of 2 baseline controls. Kinase activities were assessed by immunoblotting or in vitro kinase assays. Results: SB (0.1 μM) or Dab (1 μM) activated ERK1/2 (2.3±0.1 fold; n=4) in NRVMs consistent with Raf paradox signaling. An explanation is that Raf kinases dimerise and submaximal inhibitor concentrations bind one Raf protomer, locking it in an active conformation but activating the partner. In accord with this, 0.1 μM SB increased Raf activities. High SB concentrations (1-10 μM) initially inhibited ERK1/2 in NRVMs, but ERK1/2 were then activated (1 - 24 h) and promoted hypertrophy. In vivo (24 h), Dab and SB activated the ERK1/2 cascade, increasing ANF (17.3 ± 3.1 fold) and BNP (4.5 ± 0.8 fold) mRNA (n=4/5). Over 3 d, Dab and SB increased fractional shortening in the presence of AngII (1.22±0.06; 1.17±0.08), relative to AngII alone (0.95±0.04), increased systolic left ventricular (LV) wall thickness, and reduced systolic LV volume and internal diameter (0.83±0.03 cf 0.97±0.02 for AngII alone). Conclusions: The heart is primed for Raf paradox signaling and Raf inhibitors activate ERK1/2 in cardiomyocytes, promoting hypertrophy. In vivo, Raf inhibitors enhance ERK1/2 signaling and hypertrophy in the context of hypertension, and cardiac hypertrophy may be increased in hypertensive cancer patients receiving Raf inhibitors.


2017 ◽  
Vol 41 (5) ◽  
pp. 2004-2015 ◽  
Author(s):  
Zeng-xiang Dong ◽  
Lin Wan ◽  
Ren-jun Wang ◽  
Yuan-qi Shi ◽  
Guang-zhong Liu ◽  
...  

Background/Aims: Flavonol (–)-epicatechin (EPI) is present in high amounts in cocoa and tea products, and has been shown to exert beneficial effects on the cardiovascular system. However, the precise mechanism of EPI on cardiomyocyte hypertrophy has not yet been determined. In this study, we examined whether EPI could inhibit cardiac hypertrophy. Methods: We utilised cultured neonatal mouse cardiomyocytes and mice for immunofluorescence, immunochemistry, qRT-PCR, and western blot analyses. Results: 1µM EPI significantly inhibited 1µM angiotensin II (Ang II)-induced increase of cardiomyocyte size, as well as the mRNA and protein levels of ANP, BNP and β-MHC in vitro. The effects of EPI were accompanied with an up-regulation of SP1 and SIRT1, and were abolished by SP1 inhibition. Up-regulation of SP1 could block Ang II-induced increase in cardiomyocyte size, as well as the mRNA and protein levels of ANP, BNP and β-MHC, and increase the protein levels of SIRT1 in vitro. Moreover, 1 mg/kg body weight/day EPI significantly inhibited mouse cardiac hypertrophy induced by Ang II, which could be eliminated by SP1 inhibition in vivo. Conclusion: Our data indicated that EPI inhibited AngII-induced cardiac hypertrophy by activating the SP1/SIRT1 signaling pathway.


Pharmacology ◽  
2021 ◽  
pp. 1-15
Author(s):  
Yong Chen ◽  
Ting He ◽  
Zhongjun Zhang ◽  
Junzhi Zhang

<b><i>Introduction:</i></b> Silent information regulator 1 (SIRT1) has been extensively investigated in the cardiovascular system and has been shown to play a pivotal role in mediating cell death/survival, energy production, and oxidative stress. However, the functional role of SIRT1 in pressure overload-induced cardiac hypertrophy and dysfunction remains unclear. Resveratrol (Rsv), a widely used activator of SIRT1, has been reported to protect against cardiovascular disease. We here examine whether activation of SIRT1 by Rsv attenuate pressure overload-induced cardiac hypertrophy and to identify the underlying molecular mechanisms. <b><i>Methods:</i></b> In vivo, rat model of pressure overload-induced myocardial hypertrophy was established by abdominal aorta constriction (AAC) procedure. In vitro, Angiotensin II (Ang II) was applied to induce hypertrophy in cultured neonatal rat cardiomyocytes (NCMs). Hemodynamics and histological analyses of the heart were evaluated. The expression of SIRT1, transforming growth factor-β1 (TGF-β1)/phosphorylated (p)-small mother against decapentaplegic (Smad)3 and hypertrophic markers were determined by immunofluorescence, real-time PCR, and Western blotting techniques. <b><i>Results:</i></b> In the current study, Rsv treatment improved left ventricular function and reduced left ventricular hypertrophy and cardiac fibrosis significantly in the pressure overload rats. The expression of SIRT1 was significantly reduced, while the expression of TGF-β1/p-Smad3 was significantly enhanced in AAC afflicted rat heart. Strikingly, treatment with Rsv restored the expressions of SIRT1 and TGF-β1/p-Smad3 under AAC influence. However, SIRT1 inhibitor Sirtinol (Snl) markedly prevented the effects of Rsv, which suggest that SIRT1 signaling pathway was involved in the cardiac protective effect of Rsv. In vitro studies performed in Ang II-induced hypertrophy in NCMs confirmed the cardiac protective effect of Rsv. Furthermore, the study presented that SIRT1 negatively correlated with the cardiac hypertrophy, cardiac fibrosis, and the TGF-β1/p-Smad3 expression. <b><i>Conclusions:</i></b> Taken together, these results indicated that activation of SIRT1 by Rsv attenuates cardiac hypertrophy, cardiac fibrosis, and improves cardiac function possibly via regulation of the TGF-β1/p-Smad3 signaling pathway. Our study may provide a potential therapeutic strategy for cardiac hypertrophy.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Yue Shen ◽  
Fang Cheng ◽  
Mehul Sharma ◽  
Yulia Merkulova ◽  
Sheetal A Raithatha ◽  
...  

Introduction: Granzyme B (GzmB) is a serine protease involved in immune cell-mediated apoptosis that is enabled through a mechanism involving the pore-forming protein, perforin that facilitates internalization. However, recent evidence suggests that GzmB contributes to matrix remodeling and fibrosis through an extracellular, perforin-independent process. Hypothesis: GzmB contributes to cardiac fibrosis through a perforin-independent pathway involving extracellular proteolysis. Methods: Using a murine model of Angiotensin II (Ang II)-induced cardiac fibrosis, wild-type, GzmB deficient and Perforin deficient mice were treated with Ang II for 4 weeks, and were examined for the presence of cardiac fibrosis. Echocardiography was performed in these mice to examine the cardiac function. The level of Inflammation and inflammatory cells infiltration were examined by immunohistochemistry and RT-PCR analysis. The in vitro endothelial barrier function was measured by electric cell-substrate impedance sensing. Results: GzmB was highly up-regulated in both murine and human cardiac fibrosis. Genetic deficiency of GzmB markedly reduced Ang II-induced cardiac dysfunction, hypertrophy and fibrosis, independently of perforin. GzmB deficiency also decreases microhemorrhage, inflammation, and fibroblast accumulation in vivo. In vitro studies identified VE-cadherin as a GzmB substrate. VE-cadherin is a key endothelial cell-cell junction protein. GzmB-mediated VE-cadherin cleavage resulted in increased endothelial permeability, and increased transcellular conductance. These results were also observed in vivo. Conclusions: GzmB contributes to the onset and progression of cardiac fibrosis through a perforin-independent process involving the cleavage of VE-cadherin.


2017 ◽  
Vol 41 (3) ◽  
pp. 849-864 ◽  
Author(s):  
Yanqing Zhang ◽  
Pingping Liao ◽  
Meng’en Zhu ◽  
Wei Li ◽  
Dan Hu ◽  
...  

Background/Aims: Baicalin has been shown to be effective for various animal models of cardiovascular diseases, such as pulmonary hypertension, atherosclerosis and myocardial ischaemic injury. However, whether baicalin plays a role in cardiac hypertrophy remains unknown. Here we investigated the protective effects of baicalin on cardiac hypertrophy induced by pressure overload and explored the potential mechanisms involved. Methods: C57BL/6J-mice were treated with baicalin or vehicle following transverse aortic constriction or Sham surgery for up to 8 weeks, and at different time points, cardiac function and heart size measurement and histological and biochemical examination were performed. Results: Mice under pressure overload exhibited cardiac dysfunction, high mortality, myocardial hypertrophy, increased apoptosis and fibrosis markers, and suppressed cardiac expression of PPARα and PPARβ/δ. However, oral administration of baicalin improved cardiac dysfunction, decreased mortality, and attenuated histological and biochemical changes described above. These protective effects of baicalin were associated with reduced heart and cardiomyocyte size, lower fetal genes expression, attenuated cardiac fibrosis, lower expression of profibrotic markers, and decreased apoptosis signals in heart tissue. Moreover, we found that baicalin induced PPARα and PPARβ/δ expression in vivo and in vitro. Subsequent experiments demonstrated that long-term baicalin treatment presented no obvious cardiac lipotoxicity. Conclusions: The present results demonstrated that baicalin attenuates pressure overload induced cardiac dysfunction and ventricular remodeling, which would be due to suppressed cardiac hypertrophy, fibrosis, apoptosis and metabolic abnormality.


2021 ◽  
Author(s):  
Rui Xiong ◽  
Ning Li ◽  
Wei Wang ◽  
Bo Wang ◽  
Wenyang Jiang ◽  
...  

Abstract Background Heart failure, which is characterized by cardiac remodelling, is one of the most common chronic diseases in the aged. Stimulator of interferon genes (STING) acts as an indispensable molecule modulating immune response and inflammation in many diseases. However, the effects of STING on cardiomyopathy, especially cardiac remodelling are still largely unknown. This study was designed to investigate whether STING could affect cardiac remodelling and to explore the potential mechanisms. Methods In vivo, aortic binding (AB) surgery was performed to construct the mice model of cardiac remodelling. A DNA microinjection system was used to trigger STING overexpression in mice. The STING mRNA and protein expression levels in mice heart were measured, and the cardiac hypertrophy, fibrosis, inflammation and cardiac function were also evaluated. In vitro, cardiomyocytes stimulated by Ang II and cardiac fibroblasts stimulated by TGF-β to performed to further study effects of STING on cardiac hypertrophy and fibroblast. In terms of mechanisms, the level of autophagy was detected in mice challenged with AB. Rapamycin, a canonical autophagy inducer, intraperitoneal injected into mice to study possible potential pathway. Results In vivo, the STING mRNA and protein expression levels in mice heart challenged with AB for 6 weeks were significantly increased. STING overexpression significantly mitigated cardiac hypertrophy, fibrosis and inflammation, apart from improving cardiac function. In vitro, experiments further disclosed that STING overexpression in cardiomyocytes induced by Ang II significantly inhibited the level of cardiomyocyte cross-section area and the ANP mRNA. Meanwhile, TGF-β-induced the increase of α-SMA content and collagen synthesis in cardiac fibroblasts could be also blocked by STING overexpression. In terms of mechanisms, mice challenged with AB showed higher level of autophagy compared with the normal mice. However, STING overexpression could reverse the activation of autophagy triggered by AB. Rapamycin, a canonical autophagy inducer, offset the cardioprotective effects of STING in mice challenged with AB. Finally, further experiments unveiled that STING may inhibit autophagy by phosphorylating ULK1 on serine757. Conclusions STING may prevent cardiac remodelling induced by pressure overload by inhibiting autophagy, which could be a promising therapeutic target in heart failure.


2019 ◽  
Vol 316 (1) ◽  
pp. H186-H200 ◽  
Author(s):  
Ju Youn Beak ◽  
Hong Soon Kang ◽  
Wei Huang ◽  
Page H. Myers ◽  
Dawn E. Bowles ◽  
...  

The nuclear receptor retinoic acid-related orphan receptor-α (RORα) regulates numerous critical biological processes, including central nervous system development, lymphocyte differentiation, and lipid metabolism. RORα has been recently identified in the heart, but very little is known about its role in cardiac physiology. We sought to determine whether RORα regulates myocardial hypertrophy and cardiomyocyte survival in the context of angiotensin II (ANG II) stimulation. For in vivo characterization of the function of RORα in the context of pathological cardiac hypertrophy and heart failure, we used the “staggerer” (RORαsg/sg) mouse, which harbors a germline mutation encoding a truncated and globally nonfunctional RORα. RORαsg/sg and wild-type littermate mice were infused with ANG II or vehicle for 14 days. For in vitro experiments, we overexpressed or silenced RORα in neonatal rat ventricular myocytes (NRVMs) and human cardiac fibroblasts exposed to ANG II. RORαsg/sg mice developed exaggerated myocardial hypertrophy and contractile dysfunction after ANG II treatment. In vitro gain- and loss-of-function experiments were consistent with the discovery that RORα inhibits ANG II-induced pathological hypertrophy and cardiomyocyte death in vivo. RORα directly repressed IL-6 transcription. Loss of RORα function led to enhanced IL-6 expression, proinflammatory STAT3 activation (phopho-STAT3 Tyr705), and decreased mitochondrial number and function, oxidative stress, hypertrophy, and death of cardiomyocytes upon ANG II exposure. RORα was less abundant in failing compared with nonfailing human heart tissue. In conclusion, RORα protects against ANG II-mediated pathological hypertrophy and heart failure by suppressing the IL-6-STAT3 pathway and enhancing mitochondrial function. NEW & NOTEWORTHY Mice lacking retinoic acid-related orphan receptor-α (RORα) develop exaggerated cardiac hypertrophy after angiotensin II infusion. Loss of RORα leads to enhanced IL-6 expression and NF-κB nuclear translocation. RORα maintains mitochondrial function and reduces oxidative stress after angiotensin II. The abundance of RORα is reduced in failing mouse and human hearts.


2021 ◽  
Author(s):  
Rui Xiong ◽  
Ning Li ◽  
Bohao Liu ◽  
Ruyuan He ◽  
Wenyang Jiang ◽  
...  

Abstract Background: Heart failure, which is characterized by cardiac remodelling, is one of the most common chronic diseases in the aged. Stimulator of interferon genes (STING) acts as an indispensable molecule modulating immune response and inflammation in many diseases. However, the effects of STING on cardiomyopathy, especially cardiac remodelling are still largely unknown. This study was designed to investigate whether STING could affect cardiac remodelling and to explore the potential mechanisms. Methods: In vivo, aortic binding (AB) surgery was performed to construct the mice model of cardiac remodelling. A DNA microinjection system was used to trigger STING overexpression in mice. The STING mRNA and protein expression levels in mice heart were measured, and the cardiac hypertrophy, fibrosis, inflammation and cardiac function were also evaluated. In vitro, cardiomyocytes stimulated by Ang II and cardiac fibroblasts stimulated by TGF-β to performed to further study effects of STING on cardiac hypertrophy and fibroblast. In terms of mechanisms, the level of autophagy was detected in mice challenged with AB. Rapamycin, a canonical autophagy inducer, intraperitoneal injected into mice to study possible potential pathway.Results: In vivo, the STING mRNA and protein expression levels in mice heart challenged with AB for 6 weeks were significantly increased. STING overexpression significantly mitigated cardiac hypertrophy, fibrosis and inflammation, apart from improving cardiac function. In vitro, experiments further disclosed that STING overexpression in cardiomyocytes induced by Ang II significantly inhibited the level of cardiomyocyte cross-section area and the ANP mRNA. Meanwhile, TGF-β-induced the increase of α-SMA content and collagen synthesis in cardiac fibroblasts could be also blocked by STING overexpression. In terms of mechanisms, mice challenged with AB showed higher level of autophagy compared with the normal mice. However, STING overexpression could reverse the activation of autophagy triggered by AB. Rapamycin, a canonical autophagy inducer, offset the cardioprotective effects of STING in mice challenged with AB. Finally, further experiments unveiled that STING may inhibit autophagy by phosphorylating ULK1 on serine757.Conclusion: STING may prevent cardiac remodelling induced by pressure overload by inhibiting autophagy, which could be a promising therapeutic target in heart failure.


2021 ◽  
Vol 8 ◽  
Author(s):  
Lu Gao ◽  
Sen Guo ◽  
Rui Long ◽  
Lili Xiao ◽  
Rui Yao ◽  
...  

Lysosomal-associated protein transmembrane 5 (LAPTM5) is mainly expressed in immune cells and has been reported to regulate inflammation, apoptosis and autophagy. Although LAPTM5 is expressed in the heart, whether LAPTM5 plays a role in regulating cardiac function remains unknown. Here, we show that the expression of LAPTM5 is dramatically decreased in murine hypertrophic hearts and isolated hypertrophic cardiomyocytes. In this study, we investigated the role of LAPTM5 in pathological cardiac hypertrophy and its possible mechanism. Our results show that LAPTM5 gene deletion significantly exacerbates cardiac remodeling, which can be demonstrated by reduced myocardial hypertrophy, fibrosis, ventricular dilation and preserved ejection function, whereas the opposite phenotype was observed in LAPTM5 overexpression mice. In line with the in vivo results, knockdown of LAPTM5 exaggerated angiotensin II-induced cardiomyocyte hypertrophy in neonatal rat ventricular myocytes, whereas overexpression of LAPTM5 protected against angiotensin II-induced cardiomyocyte hypertrophy in vitro. Mechanistically, LAPTM5 directly bound to Rac1 and further inhibited MEK-ERK1/2 signaling, which ultimately regulated the development of cardiac hypertrophy. In addition, the antihypertrophic effect of LAPTM5 was largely blocked by constitutively active mutant Rac1 (G12V). In conclusion, our results suggest that LAPTM5 is involved in pathological cardiac hypertrophy and that targeting LAPTM5 has great therapeutic potential in the treatment of pathological cardiac hypertrophy.


Sign in / Sign up

Export Citation Format

Share Document