scholarly journals (–)-Epicatechin Suppresses Angiotensin II-induced Cardiac Hypertrophy via the Activation of the SP1/SIRT1 Signaling Pathway

2017 ◽  
Vol 41 (5) ◽  
pp. 2004-2015 ◽  
Author(s):  
Zeng-xiang Dong ◽  
Lin Wan ◽  
Ren-jun Wang ◽  
Yuan-qi Shi ◽  
Guang-zhong Liu ◽  
...  

Background/Aims: Flavonol (–)-epicatechin (EPI) is present in high amounts in cocoa and tea products, and has been shown to exert beneficial effects on the cardiovascular system. However, the precise mechanism of EPI on cardiomyocyte hypertrophy has not yet been determined. In this study, we examined whether EPI could inhibit cardiac hypertrophy. Methods: We utilised cultured neonatal mouse cardiomyocytes and mice for immunofluorescence, immunochemistry, qRT-PCR, and western blot analyses. Results: 1µM EPI significantly inhibited 1µM angiotensin II (Ang II)-induced increase of cardiomyocyte size, as well as the mRNA and protein levels of ANP, BNP and β-MHC in vitro. The effects of EPI were accompanied with an up-regulation of SP1 and SIRT1, and were abolished by SP1 inhibition. Up-regulation of SP1 could block Ang II-induced increase in cardiomyocyte size, as well as the mRNA and protein levels of ANP, BNP and β-MHC, and increase the protein levels of SIRT1 in vitro. Moreover, 1 mg/kg body weight/day EPI significantly inhibited mouse cardiac hypertrophy induced by Ang II, which could be eliminated by SP1 inhibition in vivo. Conclusion: Our data indicated that EPI inhibited AngII-induced cardiac hypertrophy by activating the SP1/SIRT1 signaling pathway.

Author(s):  
Yuanping Cao ◽  
Qun Wang ◽  
Caiyun Liu ◽  
Wenjun Wang ◽  
Songqing Lai ◽  
...  

Abstract Capn4 belongs to a family of calpains that participate in a wide variety of biological functions, but little is known about the role of Capn4 in cardiac disease. Here, we show that the expression of Capn4 was significantly increased in Angiotensin II (Ang II)-treated cardiomyocytes and Ang II-induced cardiac hypertrophic mouse hearts. Importantly, in agreement with the Capn4 expression patterns, the maximal calpain activity measured in heart homogenates was elevated in Ang II-treated mice, and oral coadministration of SNJ-1945 (calpain inhibitor) attenuated the total calpain activity measured in vitro. Functional assays indicated that overexpression of Capn4 obviously aggravated Ang II-induced cardiac hypertrophy, whereas Capn4 knockdown resulted in the opposite phenotypes. Further investigation demonstrated that Capn4 maintained the activation of the insulin-like growth factor (IGF)-AKT signaling pathway in cardiomyocytes by increasing c-Jun expression. Mechanistic investigations revealed that Capn4 directly bound and stabilized c-Jun, and knockdown of Capn4 increased the ubiquitination level of c-Jun in cardiomyocytes. Additionally, our results demonstrated that the antihypertrophic effect of Capn4 silencing was partially dependent on the inhibition of c-Jun. Overall, these data suggested that Capn4 contributes to cardiac hypertrophy by enhancing the c-Jun-mediated IGF-AKT signaling pathway and could be a potential therapeutic target for hypertrophic cardiomyopathy.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Lei Wang ◽  
Dongze Qin ◽  
Hongtao Shi ◽  
Yanan Zhang ◽  
Hao Li ◽  
...  

Cardiac hypertrophy mainly predicts heart failure and is highly linked with sudden loss of lives. MicroRNAs (miRNAs) play essential roles in the development of cardiac hypertrophy through binding to corresponding mRNA targets. In this study, in order to investigate the roles of two mature forms of miRNA-195, miR-195-3p, and miR-195-5p, in vitro and in vivo models of cardiac hypertrophy were established by applying angiotensin II (Ang II) to H9c2 cardiomyocytes and infusing chronic Ang II to mice, respectively. We found that miR-195-5p was evidently equally upregulated in the in vitro and in vivo studies of cardiac hypertrophy induced by Ang II. High expressed miR-195-5p could adequately promote hypertrophy, whereas the suppression of miR-195-5p prevented hypertrophy of H9c2 cardiomyocytes under Ang II treatment. Furthermore, the luciferase reporter system demonstrated that MFN2 and FBWX7 were target genes of miR-195-5p, which negatively regulated the expression of these two genes in H9c2 cells. By contrast, in both models, expression of miR-195-3p was only slightly changed without statistical significance. In addition, we observed a trend towards decreased expression of hypertrophic markers by overexpressing miR-195-3p in AngII-treated H9c2 cardiomyocytes in vitro. Taken together, our study indicates that miR-195-5p promotes cardiac hypertrophy via targeting MFN2 and FBXW7 and may provide promising therapeutic strategies for interfering cardiac hypertrophy.


2019 ◽  
Vol 116 (1) ◽  
pp. 114-126 ◽  
Author(s):  
Xiaoying Yan ◽  
Ran Zhao ◽  
Xiaorong Feng ◽  
Jingzhou Mu ◽  
Ying Li ◽  
...  

Abstract Aims Sialylation is up-regulated during the development of cardiac hypertrophy. Sialyltransferase7A (Siat7A) mRNA is consistently over-expressed in the hypertrophic left ventricle of hypertensive rats independently of genetic background. The aims of this study were: (i) to detect the Siat7A protein levels and its roles in the pathological cardiomyocyte hypertrophy; (ii) to elucidate the effect of sialylation mediated by Siat7A on the transforming-growth-factor-β-activated kinase (TAK1) expression and activity in cardiomyocyte hypertrophy; and (iii) to clarify hypoxia-inducible factor 1 (HIF-1) expression was regulated by Siat7A and transactivated TAK1 expression in cardiomyocyte hypertrophy. Methods and results Siat7A protein level was increased in hypertrophic cardiomyocytes of human and rats subjected to chronic infusion of angiotensin II (ANG II). Delivery of adeno-associated viral (AAV9) bearing shRNA against rat Siat7A into the left ventricular wall inhibited ventricular hypertrophy. Cardiac-specific Siat7A overexpression via intravenous injection of an AAV9 vector encoding Siat7A under the cardiac troponin T (cTNT) promoter aggravated cardiac hypertrophy in ANG II-treated rats. In vitro, Siat7A knockdown inhibited the induction of Sialyl-Tn (sTn) antigen and cardiomyocyte hypertrophy stimulated by ANG II. Mechanistically, ANG II induced the activation of TAK1-nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signalling in parallel to up-regulation of Siat7A in hypertrophic cardiomyocytes. Siat7A knockdown inhibited activation of TAK1-NF-κB pathway. Interestingly, HIF-1α expression was increased in cardiomyocytes stimulated by ANG II but decreased after Siat7A knockdown. HIF-1α knockdown efficiently decreased TAK1 expression. ChIP and luciferase assays showed that HIF-1α transactivated the TAK1 promoter region (nt −1285 to −1274 bp) in the cardiomyocytes following ANG II stimulus. Conclusion Siat7A was up-regulated in hypertrophic myocardium and promoted cardiomyocyte hypertrophy via activation of the HIF-1α-TAK1-NF-κB pathway.


2021 ◽  
Vol 16 (1) ◽  
pp. 242-251
Author(s):  
Guorong Zhang ◽  
Xinghua Ni

Abstract The aim of this study was to investigate the detailed role and molecular mechanism of long noncoding RNA (lncRNA) taurine upregulated gene 1 (TUG1) in cardiac hypertrophy. Cardiac hypertrophy was established by transverse abdominal aortic constriction (TAC) in vivo or angiotensin II (Ang II) treatment in vitro. Levels of lncRNA TUG1, miR-497 and myocyte enhancer factor 2C (MEF2C) mRNA were assessed by quantitative reverse transcriptase PCR (qRT-PCR). Western blot assay was performed to determine the expression of MEF2C protein. The endogenous interactions among TUG1, miR-497 and MEF2C were confirmed by dual-luciferase reporter and RNA immunoprecipitation assays. Our data indicated that TUG1 was upregulated and miR-497 was downregulated in the TAC rat model and Ang II-induced cardiomyocytes. TUG1 knockdown or miR-497 overexpression alleviated the hypertrophy induced by Ang II in cardiomyocytes. Moreover, TUG1 acted as a sponge of miR-497, and MEF2C was directly targeted and repressed by miR-497. miR-497 overexpression mediated the protective role of TUG1 knockdown in Ang II-induced cardiomyocyte hypertrophy. MEF2C was a functional target of miR-497 in regulating Ang II-induced cardiomyocyte hypertrophy. In addition, TUG1 regulated MEF2C expression through sponging miR-497. Knockdown of TUG1 rescued Ang II-induced hypertrophy in cardiomyocytes at least partly through targeting the miR-497/MEF2C axis, highlighting a novel promising therapeutic target for cardiac hypertrophy treatment.


2009 ◽  
Vol 296 (2) ◽  
pp. G147-G156 ◽  
Author(s):  
Montserrat Moreno ◽  
Leandra N. Ramalho ◽  
Pau Sancho-Bru ◽  
Marta Ruiz-Ortega ◽  
Fernando Ramalho ◽  
...  

Statins exert beneficial effects in chronically damaged tissues. Angiotensin II (ANG II) participates in liver fibrogenesis by inducing oxidative stress, inflammation, and transforming growth factor-β1 (TGF-β1) expression. We investigate whether atorvastatin modulates ANG II-induced pathogenic effects in the liver. Male Wistar rats were infused with saline or ANG II (100 ng·kg−1·min−1) for 4 wk through a subcutaneous osmotic pump. Rats received either vehicle or atorvastatin (5 mg·kg−1·day−1) by gavage. ANG II infusion resulted in infiltration of inflammatory cells (CD43 immunostaining), oxidative stress (4-hydroxynonenal), hepatic stellate cells (HSC) activation (smooth muscle α-actin), increased intercellular adhesion molecule (ICAM-1), and interleukin-6 hepatic gene expression (quantitative PCR). These effects were markedly blunted in rats receiving atorvastatin. The beneficial effects of atorvastatin were confirmed in an additional model of acute liver injury (carbon tetrachloride administration). We next explored whether the beneficial effects of atorvastatin on ANG II-induced actions are also reproduced at the cellular level. We studied HSC, a cell type with inflammatory and fibrogenic properties. ANG II (10−8M) stimulated cell proliferation, proinflammatory actions (NF-κB activation, ICAM-1 expression, interleukin-8 secretion) as well as expression of procollagen-α1(I) and TGF-β1. All of these effects were reduced in the presence of atorvastatin (10−7M). These results indicate that atorvastatin attenuates the pathogenic events induced by ANG II in the liver both in vivo and in vitro. Therefore, statins could have beneficial effects in conditions characterized by hepatic inflammation.


2019 ◽  
Vol 316 (1) ◽  
pp. H186-H200 ◽  
Author(s):  
Ju Youn Beak ◽  
Hong Soon Kang ◽  
Wei Huang ◽  
Page H. Myers ◽  
Dawn E. Bowles ◽  
...  

The nuclear receptor retinoic acid-related orphan receptor-α (RORα) regulates numerous critical biological processes, including central nervous system development, lymphocyte differentiation, and lipid metabolism. RORα has been recently identified in the heart, but very little is known about its role in cardiac physiology. We sought to determine whether RORα regulates myocardial hypertrophy and cardiomyocyte survival in the context of angiotensin II (ANG II) stimulation. For in vivo characterization of the function of RORα in the context of pathological cardiac hypertrophy and heart failure, we used the “staggerer” (RORαsg/sg) mouse, which harbors a germline mutation encoding a truncated and globally nonfunctional RORα. RORαsg/sg and wild-type littermate mice were infused with ANG II or vehicle for 14 days. For in vitro experiments, we overexpressed or silenced RORα in neonatal rat ventricular myocytes (NRVMs) and human cardiac fibroblasts exposed to ANG II. RORαsg/sg mice developed exaggerated myocardial hypertrophy and contractile dysfunction after ANG II treatment. In vitro gain- and loss-of-function experiments were consistent with the discovery that RORα inhibits ANG II-induced pathological hypertrophy and cardiomyocyte death in vivo. RORα directly repressed IL-6 transcription. Loss of RORα function led to enhanced IL-6 expression, proinflammatory STAT3 activation (phopho-STAT3 Tyr705), and decreased mitochondrial number and function, oxidative stress, hypertrophy, and death of cardiomyocytes upon ANG II exposure. RORα was less abundant in failing compared with nonfailing human heart tissue. In conclusion, RORα protects against ANG II-mediated pathological hypertrophy and heart failure by suppressing the IL-6-STAT3 pathway and enhancing mitochondrial function. NEW & NOTEWORTHY Mice lacking retinoic acid-related orphan receptor-α (RORα) develop exaggerated cardiac hypertrophy after angiotensin II infusion. Loss of RORα leads to enhanced IL-6 expression and NF-κB nuclear translocation. RORα maintains mitochondrial function and reduces oxidative stress after angiotensin II. The abundance of RORα is reduced in failing mouse and human hearts.


2011 ◽  
Vol 109 (suppl_1) ◽  
Author(s):  
Jon-Jon R Santiago ◽  
Leslie J McNaughton ◽  
Barbara E Nickel ◽  
Robert R Fandrich ◽  
Rakesh C Arora ◽  
...  

Background: Very little is known about the expression and role of fibroblast growth factor-2 (FGF-2) isoforms in the human heart. Using the rat model we have documented that high molecular weight Hi-FGF-2 rather than the commonly studied 18 kDa low molecular weight isoform Lo-FGF-2 is a potent inducer of cardiac hypertrophy in vitro and in vivo ; and that Hi-FGF-2 is expressed and secreted predominantly by cardiac non-myocytes (fibroblasts). We have now examined (i) the expression of Hi-FGF-2 in adult human heart (atria) and heart-derived non-myocytes (HDNM), and; (ii) signals regulating Hi-FGF-2 expression in HDNM. Methods/Results: Atrial tissue, obtained from patients undergoing cardiac surgery, (blinded study), was used to obtain extracts, and to isolate migratory cells (fibroblastic, HDNM). All tissue extracts (n=30) contained Hi- as well as Lo-FGF-2, assessed by Western blotting. Amounts of total FGF-2 varied from 1.5 - 25.5 pg per µg of extracted protein. Immunohistochemistry of paraffin-embedded atrial tissue sections and immunofluorescence of HDNM illustrated that human Hi-FGF-2 is localized mainly in the nucleus but is also present in cytoplasm. As was the case with rat- (ventricle and/or atria) derived fibroblasts, HDNM expressed predominantly Hi-FGF-2 (90% of total). The expression/secretion of Hi-FGF-2 by HDNM, as well as by human embryonic heart-derived fibroblasts, was significantly up-regulated by angiotensin II (Ang II). Simultaneous inhibition of both AT-1 as well as AT-2 receptors (by losartan and PD123319, respectively) was required to fully prevent Ang II-induced Hi-FGF-2 up-regulation. In addition, both inhibition of ERK activation (by U0126), or MMP activity (by MMP-2 Inhibitor I) fully prevented Ang II-induced up-regulation of human Hi-FGF-2. Conclusions: We have shown for the first time that human heart-derived fibroblastic cells express and secrete pro-hypertrophic Hi-FGF-2 in culture; and thus are likely to do so in vivo . Our data also suggest that the beneficial effects of drugs targeting Ang II signal transduction may be due, in part to their effects on Hi-FGF-2 accumulation.


2017 ◽  
Vol 43 (6) ◽  
pp. 2253-2263 ◽  
Author(s):  
Yuan Liu ◽  
Lu Gao ◽  
Sen Guo ◽  
Yuzhou Liu ◽  
Xiaoyan Zhao ◽  
...  

Background/Aims: Endothelial-to-mesenchymal transition (EndMT) is a mechanism that promotes cardiac fibrosis induced by Angiotensin II (AngII). Kaempferol (KAE) is a monomer component mainly derived from the rhizome of Kaempferia galanga L. It shows anti-inflammatory, anti-oxidative, anti-microbial and anti-cancer properties, which can be used in the treatment of cancer, cardiovascular diseases, infection, etc. But, its effects on the development of cardiac remodelling remain completely unknown. The aim of the present study was to determine whether KAE attenuates cardiac hypertrophy induced by angiotensin II (Ang II) in cultured neonatal rat cardiac myocytes in vitro and cardiac hypertrophy induced by AngII infusion in mice in vivo. Methods: Male wild-type mice aged 8-10 weeks with or without KAE were subjected to AngII or saline, to induce fibrosis or as a control, respectively. Morphological changes, echocardiographic parameters, histological analyses, and hypertrophic markers were also used to evaluate hypertrophy. Results: KAE prevented and reversed cardiac remodelling induced by AngII. The KAE in this model exerted no basal effects but attenuated cardiac fibrosis, hypertrophy and dysfunction induced by AngII. Both in vivo and in vitro experiments demonstrated that Ang II infusion or TGF-β induced EndMT can be reduced by KAE and the proliferation and activation of cardiac fibroblasts (CFs) can be inhibited by KAE. Conclusions: The results suggest that KAE prevents and reverses ventricular fibrosis and cardiac dysfunction, providing an experimental basis for clinical treatment on ventricular fibrosis.


2021 ◽  
Vol 8 ◽  
Author(s):  
Lu Gao ◽  
Sen Guo ◽  
Rui Long ◽  
Lili Xiao ◽  
Rui Yao ◽  
...  

Lysosomal-associated protein transmembrane 5 (LAPTM5) is mainly expressed in immune cells and has been reported to regulate inflammation, apoptosis and autophagy. Although LAPTM5 is expressed in the heart, whether LAPTM5 plays a role in regulating cardiac function remains unknown. Here, we show that the expression of LAPTM5 is dramatically decreased in murine hypertrophic hearts and isolated hypertrophic cardiomyocytes. In this study, we investigated the role of LAPTM5 in pathological cardiac hypertrophy and its possible mechanism. Our results show that LAPTM5 gene deletion significantly exacerbates cardiac remodeling, which can be demonstrated by reduced myocardial hypertrophy, fibrosis, ventricular dilation and preserved ejection function, whereas the opposite phenotype was observed in LAPTM5 overexpression mice. In line with the in vivo results, knockdown of LAPTM5 exaggerated angiotensin II-induced cardiomyocyte hypertrophy in neonatal rat ventricular myocytes, whereas overexpression of LAPTM5 protected against angiotensin II-induced cardiomyocyte hypertrophy in vitro. Mechanistically, LAPTM5 directly bound to Rac1 and further inhibited MEK-ERK1/2 signaling, which ultimately regulated the development of cardiac hypertrophy. In addition, the antihypertrophic effect of LAPTM5 was largely blocked by constitutively active mutant Rac1 (G12V). In conclusion, our results suggest that LAPTM5 is involved in pathological cardiac hypertrophy and that targeting LAPTM5 has great therapeutic potential in the treatment of pathological cardiac hypertrophy.


2018 ◽  
Vol 38 (2) ◽  
Author(s):  
Yunlong Bai ◽  
Xi Sun ◽  
Qun Chu ◽  
Anqi Li ◽  
Ying Qin ◽  
...  

Cardiac hypertrophy is a compensatory response to stress or stimuli, which results in arrhythmia and heart failure. Although multiple molecular mechanisms have been identified, cardiac hypertrophy is still difficult to treat. Pyroptosis is a caspase-1-dependent pro-inflammatory programmed cell death. Caspase-1 is involved in various types of diseases, including hepatic injury, cancers, and diabetes-related complications. However, the exact role of caspase-1 in cardiac hypertrophy is yet to be discovered. The present study aimed to explore the possible role of caspase-1 in pathogenesis of cardiac hypertrophy. We established cardiac hypertrophy models both in vivo and in vitro to detect the expression of caspase-1 and interleukin-1β (IL-1β). The results showed that caspase-1 and IL-1β expression levels were significantly up-regulated during cardiac hypertrophy. Subsequently, caspase-1 inhibitor was co-administered with angiotensin II (Ang II) in cardiomyocytes to observe whether it could attenuate cardiac hypertrophy. Results showed that caspase-1 attenuated the pro-hypertrophic effect of Ang II, which was related to the down-regulation of caspase-1 and IL-1β. In conclusion, our results provide a novel evidence that caspase-1 mediated pyroptosis is involved in cardiac hypertrophy, and the inhibition of caspase-1 will offer a therapeutic potential against cardiac hypertrophy.


Sign in / Sign up

Export Citation Format

Share Document