scholarly journals Functions and Roles of Long-Non-Coding RNAs in Human Nasopharyngeal Carcinoma

2018 ◽  
Vol 45 (3) ◽  
pp. 1191-1204 ◽  
Author(s):  
JingJing Wu ◽  
Swei Sunny Hann

Nasopharyngeal carcinoma (NPC) is one of the most common cancers originating in the nasopharynx and occurring at high frequency in South-eastern Asia and North Africa. Long non-coding RNAs (lncRNAs) are a class of non-protein-coding RNA molecules and key regulators of developmental, physiological, and pathological processes in humans. Emerging studies have shown that lncRNAs play critical roles in tumorgenicity and cancer prognosis. With the development of deep sequencing analyses, an extensive amount of functional lncRNAs have been discovered in nasopharyngeal carcinoma tissues and cell lines. However, the roles and mechanisms of aberrantly expressed lncRNAs in the pathogenesis of NPC are not fully understood. In this review, we briefly illustrate the concept, identification, functional characterization, and summarize recent advancements of biological functions of lncRNAs with heterogeneous mechanistic characterization and their involvement in NPC. Then, we describe individual lncRNAs that have been associated with tumorgenesis, growth, invasion, cancer stem cell differentiation, metastasis, drug resistance and discuss the strategies of their therapeutic manipulation in NPC. We also review the emerging insights into the role of lncRNAs and their potential as biomarkers and therapeutic targets for novel treatment paradigms. Finally, we highlight the up-to-date of clinical information involving lncRNAs and future directions in the linking lncRNAs to potential gene therapies, and how modifications of lncRNAs can be exploited for prevention and treatment of NPC.

2019 ◽  
Vol 5 (1) ◽  
pp. 15 ◽  
Author(s):  
Shrey Gandhi ◽  
Frank Ruehle ◽  
Monika Stoll

Cardiovascular diseases (CVDs) affect the heart and the vascular system with a high prevalence and place a huge burden on society as well as the healthcare system. These complex diseases are often the result of multiple genetic and environmental risk factors and pose a great challenge to understanding their etiology and consequences. With the advent of next generation sequencing, many non-coding RNA transcripts, especially long non-coding RNAs (lncRNAs), have been linked to the pathogenesis of CVD. Despite increasing evidence, the proper functional characterization of most of these molecules is still lacking. The exploration of conservation of sequences across related species has been used to functionally annotate protein coding genes. In contrast, the rapid evolutionary turnover and weak sequence conservation of lncRNAs make it difficult to characterize functional homologs for these sequences. Recent studies have tried to explore other dimensions of interspecies conservation to elucidate the functional role of these novel transcripts. In this review, we summarize various methodologies adopted to explore the evolutionary conservation of cardiovascular non-coding RNAs at sequence, secondary structure, syntenic, and expression level.


2020 ◽  
Vol 6 (3) ◽  
pp. 35
Author(s):  
Deepak Balamurali ◽  
Monika Stoll

Cardiovascular diseases (CVDs) are of multifactorial origin and can be attributed to several genetic and environmental components. CVDs are the leading cause of mortality worldwide and they primarily damage the heart and the vascular system. Non-coding RNA (ncRNA) refers to functional RNA molecules, which have been transcribed into DNA but do not further get translated into proteins. Recent transcriptomic studies have identified the presence of thousands of ncRNA molecules across species. In humans, less than 2% of the total genome represents the protein-coding genes. While the role of many ncRNAs is yet to be ascertained, some long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) have been associated with disease progression, serving as useful diagnostic and prognostic biomarkers. A plethora of data repositories specialized in ncRNAs have been developed over the years using publicly available high-throughput data from next-generation sequencing and other approaches, that cover various facets of ncRNA research like basic and functional annotation, expressional profile, structural and molecular changes, and interaction with other biomolecules. Here, we provide a compendium of the current ncRNA databases relevant to cardiovascular research.


2021 ◽  
Vol 22 (6) ◽  
pp. 3151 ◽  
Author(s):  
Roberto Piergentili ◽  
Simona Zaami ◽  
Anna Franca Cavaliere ◽  
Fabrizio Signore ◽  
Giovanni Scambia ◽  
...  

Endometrial cancer (EC) has been classified over the years, for prognostic and therapeutic purposes. In recent years, classification systems have been emerging not only based on EC clinical and pathological characteristics but also on its genetic and epigenetic features. Noncoding RNAs (ncRNAs) are emerging as promising markers in several cancer types, including EC, for which their prognostic value is currently under investigation and will likely integrate the present prognostic tools based on protein coding genes. This review aims to underline the importance of the genetic and epigenetic events in the EC tumorigenesis, by expounding upon the prognostic role of ncRNAs.


2020 ◽  
Vol 6 (3) ◽  
pp. 27 ◽  
Author(s):  
Dominik A. Barth ◽  
Felix Prinz ◽  
Julia Teppan ◽  
Katharina Jonas ◽  
Christiane Klec ◽  
...  

Hypoxia is dangerous for oxygen-dependent cells, therefore, physiological adaption to cellular hypoxic conditions is essential. The transcription factor hypoxia-inducible factor (HIF) is the main regulator of hypoxic metabolic adaption reducing oxygen consumption and is regulated by gradual von Hippel-Lindau (VHL)-dependent proteasomal degradation. Beyond physiology, hypoxia is frequently encountered within solid tumors and first drugs are in clinical trials to tackle this pathway in cancer. Besides hypoxia, cancer cells may promote HIF expression under normoxic conditions by altering various upstream regulators, cumulating in HIF upregulation and enhanced glycolysis and angiogenesis, altogether promoting tumor proliferation and progression. Therefore, understanding the underlying molecular mechanisms is crucial to discover potential future therapeutic targets to evolve cancer therapy. Long non-coding RNAs (lncRNA) are a class of non-protein coding RNA molecules with a length of over 200 nucleotides. They participate in cancer development and progression and might act as either oncogenic or tumor suppressive factors. Additionally, a growing body of evidence supports the role of lncRNAs in the hypoxic and normoxic regulation of HIF and its subunits HIF-1α and HIF-2α in cancer. This review provides a comprehensive update and overview of lncRNAs as regulators of HIFs expression and activation and discusses and highlights potential involved pathways.


2020 ◽  
Vol 11 (10) ◽  
Author(s):  
Kun Guo ◽  
Wenbin Gong ◽  
Qin Wang ◽  
Guosheng Gu ◽  
Tao Zheng ◽  
...  

Abstract Long non-coding RNAs (lncRNAs) are essential contributors to the progression of various human cancers. Long intergenic non-protein coding RNA 1106 is a member of lncRNAs family. Until now, the specific role of LINC01106 in CRC remains undefined. The aim the current study was to unveil the functions of LINC01106 and explore its potential molecular mechanism in CRC. Based on the data of online database GEPIA, we determined that LINC01106 was expressed at a high level in colon adenocarcinoma (COAD) tissues compared to normal colon tissues. More importantly, high level of LINC01106 had negative correlation with the overall survival of COAD patients. Additionally, we also determined the low level of LINC01106 in normal colon tissues based on UCSC database. Through qRT-PCR, we identified that LINC01106 was highly expressed in CRC tissues compared to adjacent normal ones. Similarly, we detected the expression of LINC01106 and confirmed that LINC01106 was expressed higher in CRC cells than that in normal cells. Subsequently, LINC01106 was mainly distributed in the cytoplasm. LINC01106 induced the proliferation, migration, and stem-like phenotype of CRC cells. Mechanistically, cytoplasmic LINC01106 positively modulated Gli4 in CRC cells by serving as a miR-449b-5p sponge. Furthermore, nuclear LINC01106 could activate the transcription of Gli1 and Gli2 through recruiting FUS to Gli1 and Gli2 promoters. Mechanism of investigation unveiled that Gli2 was a transcription activator of LINC01106. In conclusion, Gli2-induced upregulation of LINC01106 aggravates CRC progression through upregulating Gli2, Gli2, and Gli4.


Planta ◽  
2020 ◽  
Vol 252 (5) ◽  
Author(s):  
Li Chen ◽  
Qian-Hao Zhu ◽  
Kerstin Kaufmann

Abstract Main conclusion Long non-coding RNAs modulate gene activity in plant development and stress responses by various molecular mechanisms. Abstract Long non-coding RNAs (lncRNAs) are transcripts larger than 200 nucleotides without protein coding potential. Computational approaches have identified numerous lncRNAs in different plant species. Research in the past decade has unveiled that plant lncRNAs participate in a wide range of biological processes, including regulation of flowering time and morphogenesis of reproductive organs, as well as abiotic and biotic stress responses. LncRNAs execute their functions by interacting with DNA, RNA and protein molecules, and by modulating the expression level of their targets through epigenetic, transcriptional, post-transcriptional or translational regulation. In this review, we summarize characteristics of plant lncRNAs, discuss recent progress on understanding of lncRNA functions, and propose an experimental framework for functional characterization.


2020 ◽  
Vol 21 (10) ◽  
pp. 3711
Author(s):  
Melina J. Sedano ◽  
Alana L. Harrison ◽  
Mina Zilaie ◽  
Chandrima Das ◽  
Ramesh Choudhari ◽  
...  

Genome-wide RNA sequencing has shown that only a small fraction of the human genome is transcribed into protein-coding mRNAs. While once thought to be “junk” DNA, recent findings indicate that the rest of the genome encodes many types of non-coding RNA molecules with a myriad of functions still being determined. Among the non-coding RNAs, long non-coding RNAs (lncRNA) and enhancer RNAs (eRNA) are found to be most copious. While their exact biological functions and mechanisms of action are currently unknown, technologies such as next-generation RNA sequencing (RNA-seq) and global nuclear run-on sequencing (GRO-seq) have begun deciphering their expression patterns and biological significance. In addition to their identification, it has been shown that the expression of long non-coding RNAs and enhancer RNAs can vary due to spatial, temporal, developmental, or hormonal variations. In this review, we explore newly reported information on estrogen-regulated eRNAs and lncRNAs and their associated biological functions to help outline their markedly prominent roles in estrogen-dependent signaling.


2020 ◽  
Vol 9 (1) ◽  
pp. 3-13
Author(s):  
Nguyen Hoang Danh ◽  
Thieu Hong Hue ◽  
Quang Trong Minh ◽  
K' Trong Nghia ◽  
Nguyen Thanh Tung ◽  
...  

miRNA (microRNA) are short RNA molecules in length from 20 to 24 nucleotides that have been shown to play an important role in regulating gene expression in many different types of human cancer. Meanwhile, miRNA-214 is one of the known miRNAs involved in the formation of nasopharyngeal carcinoma (NPC) through overexpression that promotes proliferation and development of cancer cells. However, in Vietnam, the study of miR-214 related to NPC has not been conducted yet. With the aims to develop the further studies of miR-214 on NPC in Vietnamese patients, in this initial study, we conducted the analysis of miR-214 expression in previous publications, as well as the prediction of miR-214 potential target genes, which involved in many cellular pathways. Here we applied bioinformatics tools to predict miRNAs and their targets, and discuss the role of miR-214 in the context of human cancers. As the results, miR-214 acted as the oncogenic roles in NPC, relevanted to many pathways, such as cell proliferation, apoptosis, metastasis and invasion through the its target genes LTF, Bim, Bax, LINC0086, etc. In conclusion, the use of computional approaches facilitate the further experimental validation of miRNAs in general, particularly miR-214, in Vietnamese NPC patients.


Author(s):  
Chunying Zhang ◽  
Lin Yang ◽  
Ge Zhao ◽  
Jiaxiang Wang ◽  
Juntao Pan ◽  
...  

Neuroblastoma (NBL) exists as the most common solid malignancy which predominantly occurs in children. Long non-coding RNAs (lncRNAs) have been widely confirmed to exert functions in modulating the pathogenesis of diverse diseases. Nevertheless, whether the putative function of long intergenic non-protein coding RNA 1518 (LINC01518) in NBL has not been elucidated yet. In this study, RT-qPCR was used for determining LINC01518 expression and LINC01518 was found to be notably overexpressed in NBL tissues and cell lines compared with normal nerve tissues and cell lines. Functional experiments and mechanism assays were respectively done for the investigation into cell phenotype and for the exploration of correlation among genes. LINC01518 silencing was discovered to repress cell malignant phenotype. We observed that GATA binding protein 3 (GATA3) was an active transcription factor of LINC01518. Besides, LINC01518 functioned as a competing endogenous RNA (ceRNA), which sequestered microRNA-206 (miR-206) to up-regulate protein kinase cAMP-activated catalytic subunit beta (PRKACB). Afterwards, rescue assays validated the oncogenic role of GATA3/LINC01518/miR-206/PRKACB axis in NBL. To be summarized, our research determined that LINC01518 might be used as a putative molecular marker for NBL diagnosis and treatment.


Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5651
Author(s):  
Eleftheria Papaioannou ◽  
María del Pilar González-Molina ◽  
Ana M. Prieto-Muñoz ◽  
Laura Gámez-Reche ◽  
Alicia González-Martín

Cancer immunology research has mainly focused on the role of protein-coding genes in regulating immune responses to tumors. However, despite more than 70% of the human genome is transcribed, less than 2% encodes proteins. Many non-coding RNAs (ncRNAs), including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), have been identified as critical regulators of immune cell development and function, suggesting that they might play important roles in orchestrating immune responses against tumors. In this review, we summarize the scientific advances on the role of ncRNAs in regulating adaptive tumor immunity, and discuss their potential therapeutic value in the context of cancer immunotherapy.


Sign in / Sign up

Export Citation Format

Share Document