scholarly journals Long Non-Coding RNA LUCAT1 Promotes Proliferation and Invasion in Clear Cell Renal Cell Carcinoma Through AKT/GSK-3β Signaling Pathway

2018 ◽  
Vol 48 (3) ◽  
pp. 891-904 ◽  
Author(s):  
Zaosong Zheng ◽  
Fengjin Zhao ◽  
Dingjun Zhu ◽  
Jinli Han ◽  
Haicheng Chen ◽  
...  

Background/Aims: Long non-coding RNAs (lncRNAs) have emerged as new regulators and biomarkers in several cancers. However, few lncRNAs have been well characterized in clear cell renal cell carcinoma (ccRCC). Methods: We investigated the lncRNA expression profile by microarray analysis in 5 corresponding ccRCC tissues and adjacent normal tissues. Lung cancer–associated transcript 1 (LUCAT1) expression was examined in 90 paired ccRCC tissues by real-time PCR and validated by The Cancer Genome Atlas (TCGA) database. Kaplan-Meier analysis was used to examine the prognostic value of LUCAT1 and CXCL2 in ccRCC patients. Loss and gain of function were performed to explore the effect of LUCAT1 on proliferation and invasion in ccRCC cells. Western blotting was performed to evaluate the underlying mechanisms of LUCAT1 in ccRCC progression. Chemokine stimulation assay was performed to investigate possible mechanisms controlling LUCAT1 expression in ccRCC cells. Enzyme-linked immunosorbent assays were performed to determine serum CXCL2 in ccRCC patients and healthy volunteers. Receiver operating characteristic curve analysis was performed to examine the clinical diagnostic value of serum CXCL2 in ccRCC. Results: We found that LUCAT1 was significantly upregulated in both clinical ccRCC tissues (n = 90) and TCGA ccRCC tissues (n = 448) compared with normal tissues. Statistical analysis revealed that the LUCAT1 expression level positively correlated with tumor T stage (P < 0.01), M stage (P < 0.01), and TNM stage (P < 0.01). Overall survival and disease-free survival time were significantly shorter in the high-LUCAT1-expression group than in the low-LUCAT1-expression group (log-rank P < 0.01). LUCAT1 knockdown inhibited ccRCC cell proliferation and colony formation, induced cell cycle arrest at G1 phase, and inhibited cell migration and invasion. Overexpression of LUCAT1 promoted proliferation, migration, and invasion of ccRCC cells. Mechanistic investigations showed that LUCAT1 induced cell cycle G1 arrest by regulating the expression of cyclin D1, cyclin-dependent kinase 4, and phosphorylated retinoblastoma transcriptional corepressor 1. Moreover, LUCAT1 promoted proliferation and invasion in ccRCC cells partly through inducing the phosphorylation of AKT and suppressing the phosphorylation of GSK-3β. We also revealed that chemokine CXCL2, upregulated in ccRCC, induced LUCAT1 expression and might be a diagnostic and prognostic biomarker in ccRCC. Conclusions: LUCAT1 was upregulated in ccRCC tissues and renal cancer cell lines, and significantly correlated with malignant stage and poor prognosis in ccRCC. LUCAT1 promoted proliferation and invasion in ccRCC cells through the AKT/GSK-3β signaling pathway. We also revealed that LUCAT1 overexpression was induced by chemokine CXCL2. These findings indicate that the CXCL2/LUCAT1/AKT/GSK-3β axis is a potential therapeutic target and molecular biomarker for ccRCC.

Oncogene ◽  
2021 ◽  
Author(s):  
Ming-xiao Zhang ◽  
Li-zhen Zhang ◽  
Liang-min Fu ◽  
Hao-hua Yao ◽  
Lei Tan ◽  
...  

AbstractLong noncoding RNAs (lncRNAs) have been reported to exert important roles in tumors, including clear cell renal cell carcinoma (ccRCC). PVT1 is an important oncogenic lncRNA which has critical effects on onset and development of various cancers, however, the underlying mechanism of PVT1 functioning in ccRCC remains largely unknown. VHL deficiency-induced HIF2α accumulation is one of the major factors for ccRCC. Here, we identified the potential molecular mechanism of PVT1 in promoting ccRCC development by stabilizing HIF2α. PVT1 was significantly upregulated in ccRCC tissues and high PVT1 expression was associated with poor prognosis of ccRCC patients. Both gain-of-function and loss-of function experiments revealed that PVT1 enhanced ccRCC cells proliferation, migration, and invasion and induced tumor angiogenesis in vitro and in vivo. Mechanistically, PVT1 interacted with HIF2α protein and enhanced its stability by protecting it from ubiquitination-dependent degradation, thereby exerting its biological significance. Meanwhile, HIF2α bound to the enhancer of PVT1 to transactivate its expression. Furthermore, HIF2α specific inhibitor could repress PVT1 expression and its oncogenic functions. Therefore, our study demonstrates that the PVT1/ HIF2α positive feedback loop involves in tumorigenesis and progression of ccRCC, which may be exploited for anticancer therapy.


2015 ◽  
Vol 69 (6) ◽  
pp. 497-504 ◽  
Author(s):  
Zhengzuo Sheng ◽  
Yang Liu ◽  
Caipeng Qin ◽  
Zhenhua Liu ◽  
Yeqing Yuan ◽  
...  

OBJECTIVE:To investigate if IgG can be expressed in clear cell renal cell carcinoma (cRCC) , and the expression of IgG is involved in the cancer progression. If IgG expression can serve as a potential target in cancer therapies and be used for judging the prognosis.MATERIALS AND METHODS:By immunohistochemistry, we detected IgG in cRCC tissues(75 cRCC tissues and75 adjacent normal kidney tissues). Immunofluorescence and Western blot was used to detect the IgG in cRCC cell lines (786-0, ACHN and CAKI-I). By RT-PCR, the functional transcript of IgG heavy chain was detected. Knockdown of IgG was to analyze the proliferation, migration and invasion ability by CCK8, Transwell and Matrigel and apoptosis in cRCC cell lines.RESULTS:By immunohistochemistry, we found strong staining of IgG in 66 cases of 75 cRCC tissues and 63 cases of 75 adjacent normal kidney tissues. Immunofluorescence and Western blot was found IgG in cRCC cell lines. Knock-down IgG in cRCC cell lines resulted in significant inhibition of cell proliferation, migration and invasion, and the induction of apoptosis of the 786-0 cells. The immunohistochemistry analysis showed that high IgG expression significantly correlated with the poor differentiation and advanced stage of cRCC.CONCLUSION:IgG was over expressed in cRCC and was involved in the proliferation, migration and invasion of cancer cells. IgG expression may serve as a potential target in cancer therapies and could be used for judging the prognosis.


2020 ◽  
Vol 48 (12) ◽  
pp. 030006052093604
Author(s):  
Yi Jin ◽  
Tian-xi Wang ◽  
Hao Li ◽  
Peng Guo ◽  
Qing-qing Wang

Background Clear cell renal cell carcinoma (ccRCC) is a common urological disease. Expression of the protein tyrosine phosphatase 12 gene ( PTPN12) is decreased in many cancers; however, the relationship between PTPN12 gene function and renal cancer remains unclear. Methods We detected PTPN12 protein expression in ccRCC and corresponding normal tissues from 64 patients with ccRCC by immunohistochemistry, and relative PTPN12 mRNA levels by real-time quantitative polymerase chain reaction. The relationships between the relative expression levels of PTPN12 mRNA and the patients’ clinical data were analyzed. Results PTPN12 protein and mRNA expression levels were significantly lower in ccRCC compared with the corresponding normal tissues. The mRNA expression levels in the ccRCC and corresponding normal tissues from the 64 patients with ccRCC were 0.459±0.445 and 1.001±0.128, respectively, compared with the control (glyceraldehyde 3-phosphate dehydrogenase). There was a significant correlation between relative expression of PTPN12 mRNA in ccRCC tissues and tumor diameter and clinical stage. Conclusion The expression levels of PTPN12 protein and mRNA were significantly lower in ccRCC tissues compared with normal tissues. The role of PTPN12 may provide new insights and evidence to aid the diagnosis and targeted therapy of ccRCC.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Zhuo Ye ◽  
Jiachen Duan ◽  
Lihui Wang ◽  
Yanli Ji ◽  
Baoping Qiao

Abstract Background Clear cell renal cell carcinoma (ccRCC) is the most common renal cell carcinoma subtype with a poor prognosis. LncRNA-LET is a long non-coding RNA (lncRNA) that is down-regulated in ccRCC tissues. However, its role in ccRCC development and progress is unclear. Methods LncRNA-LET expression was detected in ccRCC tissues and ccRCC cells using quantitative real-time PCR. The overexpression and knockdown experiments were performed in ccRCC cells and xenograft mouse model to evaluate role of lncRNA-LET. Cell cycle, apoptosis and JC-1 assays were conducted via flow cytometer. The protein levels were measured through western blot analysis and the interaction between lncRNA-LET and miR-373-3p was identified via luciferase reporter assay. Results LncRNA-LET expression was lower in ccRCC tissues than that in the matched adjacent non-tumor tissues (n = 16). In vitro, lncRNA-LET overexpression induced cell cycle arrest, promoted apoptosis and impaired mitochondrial membrane potential, whereas its knockdown exerted opposite effects. Moreover, we noted that lncRNA-LET may act as a target for oncomiR miR-373-3p. In contrast to lncRNA-LET, miR-373-3p expression was higher in ccRCC tissues. The binding between lncRNA-LET and miR-373-3p was validated. Two downstream targets of miR-373-3p, Dickkopf-1 (DKK1) and tissue inhibitor of metalloproteinase-2 (TIMP2), were positively regulated by lncRNA-LET in ccRCC cells. MiR-373-3p mimics reduced lncRNA-LET-induced up-regulation of DKK1 and TIMP2 levels, and attenuated lncRNA-LET-mediated anti-tumor effects in ccRCC cells. In vivo, lncRNA-LET suppressed the growth of ccRCC xenograft tumors. Conclusion These findings indicate that lncRNA-LET plays a tumor suppressive role in ccRCC by regulating miR-373-3p.


Sign in / Sign up

Export Citation Format

Share Document