scholarly journals Therapeutic Strategies for Targeting IL-33/ST2 Signalling for the Treatment of Inflammatory Diseases

2018 ◽  
Vol 49 (1) ◽  
pp. 349-358 ◽  
Author(s):  
Wei-Yu Chen ◽  
Tzu-Hsien Tsai ◽  
Jenq-Lin Yang ◽  
Lung-Chih Li

Interleukin (IL)-33, a member of the IL-1 family of cytokines, is involved in innate and adaptive immune responses via interaction with its receptor, ST2. Activation of ST2 signalling by IL-33 triggers pleiotropic immune functions in multiple ST2-expressing immune cells, including macrophages, neutrophils, eosinophils, basophils, mast cells, type 2 helper T cells, regulatory T cells, and group 2 innate lymphoid cells. IL-33-mediated effector functions contribute to the tissue inflammatory and reparative responses in various organs including lung, skin, kidney, central nerve system, cardiovascular system, and gastrointestinal system. Endogenous IL-33/ ST2 signaling exhibits diverse immune regulatory functions during progression of different diseases. IL-33 likely functions as a disease sensitizer and plays pathological roles in inflamed tissues in allergic disorders that involve hyperreactive immune responses in the context of skin and pulmonary allergy. However, IL-33 also mediates tissue-protective functions during the recovery phase following tissue injury in the central nerve system and gastrointestinal system. Modulation of the IL-33/ST2 axis, therefore, represents a promising strategy for treating immune disorders that involve dysregulation of the cytokine signalling. In the past two decades, therapeutic strategies blocking IL-33/ST2 have been extensively studied for the treatment of diseases in animal models. In this review, the current progress on the development of therapeutic biologics for targeting IL-33/ST2 signalling in inflammatory diseases is summarized.

2022 ◽  
Vol 40 (1) ◽  
Author(s):  
Gaelen K. Dwyer ◽  
Louise M. D'Cruz ◽  
Hēth R. Turnquist

Our understanding of the functions of the IL-1 superfamily cytokine and damage-associated molecular pattern IL-33 continues to evolve with our understanding of homeostasis and immunity. The early findings that IL-33 is a potent driver of type 2 immune responses promoting parasite expulsion, but also inflammatory diseases like allergy and asthma, have been further supported. Yet, as the importance of a type 2 response in tissue repair and homeostasis has emerged, so has the fundamental importance of IL-33 to these processes. In this review, we outline an evolving understanding of IL-33 immunobiology, paying particular attention to how IL-33 directs a network of ST2+ regulatory T cells, reparative and regulatory macrophages, and type 2 innate lymphoid cells that are fundamental to tissue development, homeostasis, and repair. Expected final online publication date for the Annual Review of Immunology, Volume 40 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Tian-Yu Lei ◽  
Ying-Ze Ye ◽  
Xi-Qun Zhu ◽  
Daniel Smerin ◽  
Li-Juan Gu ◽  
...  

AbstractThrough considerable effort in research and clinical studies, the immune system has been identified as a participant in the onset and progression of brain injury after ischaemic stroke. Due to the involvement of all types of immune cells, the roles of the immune system in stroke pathology and associated effects are complicated. Past research concentrated on the functions of monocytes and neutrophils in the pathogenesis of ischaemic stroke and tried to demonstrate the mechanisms of tissue injury and protection involving these immune cells. Within the past several years, an increasing number of studies have elucidated the vital functions of T cells in the innate and adaptive immune responses in both the acute and chronic phases of ischaemic stroke. Recently, the phenotypes of T cells with proinflammatory or anti-inflammatory function have been demonstrated in detail. T cells with distinctive phenotypes can also influence cerebral inflammation through various pathways, such as regulating the immune response, interacting with brain-resident immune cells and modulating neurogenesis and angiogenesis during different phases following stroke. In view of the limited treatment options available following stroke other than tissue plasminogen activator therapy, understanding the function of immune responses, especially T cell responses, in the post-stroke recovery period can provide a new therapeutic direction. Here, we discuss the different functions and temporal evolution of T cells with different phenotypes during the acute and chronic phases of ischaemic stroke. We suggest that modulating the balance between the proinflammatory and anti-inflammatory functions of T cells with distinct phenotypes may become a potential therapeutic approach that reduces the mortality and improves the functional outcomes and prognosis of patients suffering from ischaemic stroke.


Author(s):  
Jamie E Meegan ◽  
Julie A. Bastarache ◽  
Lorraine B. Ware

Levels of circulating cell-free hemoglobin are elevated during hemolytic and inflammatory diseases and contribute to organ dysfunction and severity of illness. Though several studies have investigated the contribution of hemoglobin to tissue injury, the precise signaling mechanisms of hemoglobin-mediated endothelial dysfunction in the lung and other organs are not yet completely understood. The purpose of this review is to highlight the knowledge gained thus far and the need for further investigation regarding hemoglobin-mediated endothelial inflammation and injury in order to develop novel therapeutic strategies targeting the damaging effects of cell-free hemoglobin.


2008 ◽  
Vol 15 (3) ◽  
pp. 452-459 ◽  
Author(s):  
Giulia Freer ◽  
Donatella Matteucci ◽  
Paola Mazzetti ◽  
Francesca Tarabella ◽  
Valentina Catalucci ◽  
...  

ABSTRACT Dendritic cells are the only antigen-presenting cells that can present exogenous antigens to both helper and cytolytic T cells and prime Th1-type or Th2-type cellular immune responses. Given their unique immune functions, dendritic cells are considered attractive “live adjuvants” for vaccination and immunotherapy against cancer and infectious diseases. The present study was carried out to assess whether the reinjection of autologous monocyte-derived dendritic cells loaded with an aldithriol-2-inactivated primary isolate of feline immune deficiency virus (FIV) was able to elicit protective immune responses against the homologous virus in naive cats. Vaccine efficacy was assessed by monitoring immune responses and, finally, by challenge with the homologous virus of vaccinated, mock-vaccinated, and healthy cats. The outcome of challenge was followed by measuring cellular and antibody responses and viral and proviral loads and quantitating FIV by isolation and a count of CD4+/CD8+ T cells in blood. Vaccinated animals exhibited clearly evident FIV-specific peripheral blood mononuclear cell proliferation and antibody titers in response to immunization; however, they became infected with the challenge virus at rates comparable to those of control animals.


2020 ◽  
Vol 40 (4) ◽  
pp. 853-864 ◽  
Author(s):  
Tian X. Zhao ◽  
Stephen A. Newland ◽  
Ziad Mallat

Regulatory T cells and type-2 innate lymphoid cells represent 2 subsets of immune cells, which have been shown in preclinical models to be important in atherosclerosis and myocardial repair. Regulatory T cells play a crucial role in immune homeostasis and tolerance via their interactions with effector T cells, dendritic cells, and monocytes/macrophages. They also utilize and secrete inhibitory cytokines, including interleukin 10 and transforming growth factor β, to regulate or suppress pathogenic immune responses. Type-2 innate lymphoid cells have an important role in type-2 immune responses and tissue repair through secreting interleukins 5 and 13, as well as a variety of biological mediators and growth factors. Intriguingly, interleukin-2 has emerged as a common cytokine, which can be harnessed to upregulate both cell types, and also has important translational consequences as clinical trials are ongoing for its use in cardiovascular disease. Here, we briefly review the biology of these regulatory immune cell types, discuss the preclinical and clinical evidence for their functions in cardiovascular disease, examine the prospects for clinical translation and current ongoing trials, and finally, postulate how overlap in the mechanisms of upregulation may be leveraged in future treatments for patients.


Cells ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 154 ◽  
Author(s):  
Alberto Anel ◽  
Ana Gallego-Lleyda ◽  
Diego de Miguel ◽  
Javier Naval ◽  
Luis Martínez-Lostao

: T-cell mediated immune responses should be regulated to avoid the development of autoimmune or chronic inflammatory diseases. Several mechanisms have been described to regulate this process, namely death of overactivated T cells by cytokine deprivation, suppression by T regulatory cells (Treg), induction of expression of immune checkpoint molecules such as CTLA-4 and PD-1, or activation-induced cell death (AICD). In addition, activated T cells release membrane microvesicles called exosomes during these regulatory processes. In this review, we revise the role of exosome secretion in the different pathways of immune regulation described to date and its importance in the prevention or development of autoimmune disease. The expression of membrane-bound death ligands on the surface of exosomes during AICD or the more recently described transfer of miRNA or even DNA inside T-cell exosomes is a molecular mechanism that will be analyzed.


2021 ◽  
Vol 12 ◽  
Author(s):  
Laurence S. C. Lok ◽  
Jennifer A. Walker ◽  
Helen E. Jolin ◽  
Seth T. Scanlon ◽  
Masaru Ishii ◽  
...  

Group 2 innate lymphoid cells (ILC2s) are early effectors of mucosal type 2 immunity, producing cytokines such as interleukin (IL)-13 to mediate responses to helminth infection and allergen-induced inflammation. ILC2s are also present in lymph nodes (LNs) and can express molecules required for antigen presentation, but to date there are limited data on their dynamic behaviour. We used a CD2/IL-13 dual fluorescent reporter mouse for in vivo imaging of ILC2s and Th2 T cells in real time following a type 2 priming helminth infection or egg injection. After helminth challenge, we found that ILC2s were the main source of IL-13 in lymphoid organs (Peyer’s patches and peripheral LNs), and were located in T cell areas. Intravital imaging demonstrated an increase in IL-13+ ILC2 size and movement following helminth infection, but reduced duration of interactions with T cells compared with those in homeostasis. In contrast, in the intestinal mucosa, we observed an increase in ILC2-T cell interactions post-infection, including some of prolonged duration, as well as increased IL-13+ ILC2 movement. These data suggest that ILC2 activation enhances cell motility, with the potential to increase the area of distribution of cytokines to optimise the early generation of type 2 responses. The prolonged ILC2 interactions with T cells within the intestinal mucosa are consistent with the conclusion that contact-based T cell activation may occur within inflamed tissues rather than lymphoid organs. Our findings have important implications for our understanding of the in vivo biology of ILC2s and the way in which these cells facilitate adaptive immune responses.


2021 ◽  
Vol 12 ◽  
Author(s):  
Changyi Li ◽  
Jianyue Liu ◽  
Jie Pan ◽  
Yuhui Wang ◽  
Lei Shen ◽  
...  

Innate lymphoid cells (ILCs) are emerging as important players in inflammatory diseases. The oral mucosal barrier harbors all ILC subsets, but how these cells regulate the immune responses in periodontal ligament tissue during periodontitis remains undefined. Here, we show that total ILCs are markedly increased in periodontal ligament of periodontitis patients compared with healthy controls. Among them, ILC1s and ILC3s, particularly NKp44+ILC3 subset, are the predominant subsets accumulated in the periodontal ligament. Remarkably, ILC1s and ILC3s from periodontitis patients produce more IL-17A and IFN-γ than that from healthy controls. Collectively, our results highlight the role of ILCs in regulating oral immunity and periodontal ligament inflammation and provide insights into targeting ILCs for the treatment of periodontitis.


2020 ◽  
Author(s):  
Wan-Chung Hu

Human host immune responses to parasitic infections are complex. They can be categorized into four immunological pathways against four types of parasitic infections. For intracellular protozoa, the eradicable host immunological pathway is TH1 immunity involving macrophages, interferon gamma (IFNg) CD4 T cells, innate lymphoid cells 1 (ILC1), CD8 T cells, invariant natural killer T cells 1 (iNKT1) cells, and immunoglobulin G3 (IgG3) B cells. For free-living extracellular protozoa, the eradicable host immunological pathway is TH22 immunity involving neutrophils, interleukin (IL)-22/IL-17 CD4 T cells, innate lymphoid cells 3 (ILC3), iNKT17 cells, and IgG2 B cells. For endoparasites (helminths), the eradicable host immunological pathway is TH2a immunity with inflammatory eosinophils (iEOS), IL-5/IL-4 CD4 T cells, IL-25 inducing inflammatory innate lymphoid cells 2 (iILC2), mast cells-tryptase (MCt), iNKT2 cells, and IgG4 B cells. For ectoparasites (parasitic insects and arachnids), the eradicable host immunological pathway is TH2b immunity with inflammatory basophils, mast cells-tryptase/chymase (MCtc), IL-3/IL-4 CD4 T cells, IL-33 inducing nature innate lymphoid cells 2 (nILC2), iNKT2 cells, and immunoglobulin E (IgE) B cells. The tolerable host immunity against ectoparasites and endoparasites is TH9 immunity with regulatory eosinophils, regulatory basophils, IL-9 mast cells (MMC9), thymic stromal lymphopoietin inducing innate lymphoid cells 2, IL-9 CD4 T cells, iNKT2 cells, and IgA2 B cells. This categorization provides a complete framework of immunological pathways against four types of parasitic infections.


2019 ◽  
Vol 216 (12) ◽  
pp. 2763-2777 ◽  
Author(s):  
Lisa Knipfer ◽  
Anja Schulz-Kuhnt ◽  
Markus Kindermann ◽  
Vicky Greif ◽  
Cornelia Symowski ◽  
...  

Group 2 innate lymphoid cells (ILC2s) possess indispensable roles during type 2–mediated inflammatory diseases. Although their physiological and detrimental immune functions seem to depend on the anatomical compartment they reside, their tissue tropism and the molecular and immunological processes regulating the self-renewal of the local pool of ILC2s in the context of inflammation or infection are incompletely understood. Here, we analyzed the role of the CC-chemokine receptor CCR8 for the biological functions of ILC2s. In vitro and in vivo experiments indicated that CCR8 is in comparison to the related molecule CCR4 less important for migration of these cells. However, we found that activated mouse and human ILC2s produce the CCR8 ligand CCL1 and are a major source of CCL1 in vivo. CCL1 signaling to ILC2s regulates their proliferation and supports their capacity to protect against helminthic infections. In summary, we identify a novel chemokine receptor–dependent mechanism by which ILC2s are regulated during type 2 responses.


Sign in / Sign up

Export Citation Format

Share Document